129 research outputs found

    Detection of two intervening Ne viii absorbers probing warm gas at z ~ 0.6

    Get PDF
    Large scale structure and cosmolog

    On the Puzzle of Odd-Frequency Superconductivity

    Full text link
    Since the first theoretical proposal by Berezinskii, an odd-frequency superconductivity has encountered the fundamental problems on its thermodynamic stability and rigidity of a homogenous state accompanied by unphysical Meissner effect. Recently, Solenov {\it et al}. [Phys. Rev. B {\bf 79} (2009) 132502.] have asserted that the path-integral formulation gets rid of the difficulties leading to a stable homogenous phase with an ordinary Meissner effect. Here, we show that it is crucial to choose the appropriate saddle-point solution that minimizes the effective free energy, which was assumed {\it implicitly} in the work by Solenov and co-workers. We exhibit the path-integral framework for the odd-frequency superconductivity with general type of pairings, including an argument on the retarded functions via the analytic continuation to the real axis.Comment: 6 pages, in JPSJ forma

    Possible Odd-Frequency Superconductivity in Strong-Coupling Electron-Phonon Systems

    Full text link
    A possibility of the odd-frequency pairing in the strong-coupling electron-phonon systems is discussed. Using the Holstein-Hubbard model, we demonstrate that the anomalously soft Einstein mode with the frequency ωE≪ωc\omega_{\rm E}\ll\omega_{c} (ωc\omega_{c} is the order of the renormalized bandwidth) mediates the s-wave odd-frequency triplet pairing against the ordinary even-frequency singlet pairing. It is necessary for the emergence of the odd-frequency pairing that the pairing interaction is strongly retarded as well as the strong coupling, since the pairing interaction for the odd-frequency pairing is effective only in the diagonal scattering channel, (ωn,−ωn)→(ωn′,−ωn′)(\omega_{n},-\omega_{n})\to(\omega_{n'},-\omega_{n'}) with ωn′=ωn≳ωE\omega_{n'}=\omega_{n}\gtrsim \omega_{\rm E}. Namely, the odd-frequency superconductivity is realized in the opposite limit of the original BCS theory. The Ginzburg-Landau analysis in the strong-coupling region shows that the specific-heat discontinuity and the slope of the temperature dependence of the superfluid density can be quite small as compared with the BCS values, depending on the ratio of the transition temperature TcT_{c} and ωc\omega_{c}.Comment: 6 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Design and Bolometer Characterization of the SPT-3G First-year Focal Plane

    Get PDF
    During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 201

    Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions

    Full text link
    We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson junctions with high critical current densities, large normal resistance times area products, high quality factors, and very good spatial uniformity. For these junctions a transition from 0- to \pi-coupling is observed for a thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The magnetic field dependence of the \pi-coupled junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane anisotropy and large saturation magnetization, indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes provides information on the junction quality factor and the relevant damping mechanisms up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at low frequencies, the damping is dominated by the finite surface resistance of the junction electrodes at high frequencies. High quality factors of up to 30 around 200 GHz have been achieved. Our analysis shows that the fabricated junctions are promising for applications in superconducting quantum circuits or quantum tunneling experiments.Comment: 15 pages, 9 figure

    Spectroscopic evidence of odd frequency superconducting order

    Get PDF
    Spin filter superconducting S/I/N tunnel junctions (NbN/GdN/TiN) show a robust and pronounced zero bias conductance peak at low temperatures, the magnitude of which is several times the normal state conductance of the junction. Such a conductance anomaly is representative of unconventional superconductivity and is interpreted as a direct signature of an odd frequency superconducting order.Comment: 5 pages, 3 figures + supplementary informatio
    • …
    corecore