1,549 research outputs found
Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions
We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson
junctions made of high-T_c superconductors in order to clarify the influence of
the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the
MQT rate on the twist angle about the c-axis is calculated by using
the functional integral and the bounce method. Due to the d-wave OPS, the
dependence of standard deviation of the switching current distribution
and the crossover temperature from thermal activation to MQT are found to be
given by and , respectively. We also show
that a dissipative effect resulting from the nodal quasiparticle excitation on
MQT is negligibly small, which is consistent with recent MQT experiments using
BiSrCaCuO intrinsic junctions. These results
indicate that MQT in c-axis twist junctions becomes a useful experimental tool
for testing the OPS of high-T_c materials at low temperature, and suggest high
potential of such junctions for qubit applications.Comment: 15 pages, 8 figures, 1 tabl
Orbital entanglement and violation of Bell inequalities in mesoscopic conductors
We propose a spin-independent scheme to generate and detect two-particle
entanglement in a mesoscopic normal-superconductor system. A superconductor,
weakly coupled to the normal conductor, generates an orbitally entangled state
by injecting pairs of electrons into different leads of the normal conductor.
The entanglement is detected via violation of a Bell inequality, formulated in
terms of zero-frequency current cross-correlators. It is shown that the Bell
inequality can be violated for arbitrary strong dephasing in the normal
conductor.Comment: 4 pages, 2 figure
Conductance Increase by Electron-Phonon Interaction in Quantum Wires
We investigate the influence of electron-phonon interactions on the
DC-conductance of a quantum wire in the limit of one occupied
subband. At zero temperature, a Tomonaga-Luttinger-like renormalization of
to a value slightly larger than is calculated for a
realistic quantum wire model.Comment: 12 pages RevTeX, no figure. Appears in Phys. Rev.
Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields
The dephasing time of disordered two-dimensional electron gas in a modulated
magnetic field is studied. It is shown that in the weak inhomogeneity limit,
the dephasing rate is proportional to the field amplitude, while in strong
inhomogeneity limit the dependence is quadratic. It is demonstrated that the
origin of the dependence of dephasing time on field amplitude lies in the
nature of corresponding single-particle motion. A semiclassical Monte Carlo
algorithm is developed to study the dephasing time, which is of qualitative
nature but efficient in uncovering the dependence of dephasing time on field
amplitude for arbitrarily complicated magnetic-field modulation. Computer
simulations support analytical results. The crossover from linear to quadratic
dependence is then generalized to the situation with magnetic field modulated
periodically in one direction with zero mean, and it is argued that this
crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure
Effect of Interactions on the Admittance of Ballistic Wires
A self-consistent theory of the admittance of a perfect ballistic, locally
charge neutral wire is proposed. Compared to a non-interacting theory,
screening effects drastically change the frequency behavior of the conductance.
In the single-channel case the frequency dependence of the admittance is
monotonic, while for two or more channels collective interchannel excitations
lead to resonant structures in the admittance. The imaginary part of the
admittance is typically positive, but can become negative near resonances.Comment: Presentation considerably modified; the results are unchanged. 4
pages, 2 figures .eps-format include
Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles
We present a microscopic model for surface-enhanced Raman scattering (SERS)
from molecules adsorbed on small noble-metal nanoparticles. In the absence of
direct overlap of molecular orbitals and electronic states in the metal, the
main enhancement source is the strong electric field of the surface plasmon
resonance in a nanoparticle acting on a molecule near the surface. In small
particles, the electromagnetic enhancement is strongly modified by quantum-size
effects. We show that, in nanometer-sized particles, SERS magnitude is
determined by a competition between several quantum-size effects such as the
Landau damping of surface plasmon resonance and reduced screening near the
nanoparticle surface. Using time-dependent local density approximation, we
calculate spatial distribution of local fields near the surface and enhancement
factor for different nanoparticles sizes.Comment: 8 pages, 6 figures. Considerably extended final versio
Energetics of metal slabs and clusters: the rectangle-box model
An expansion of energy characteristics of wide thin slab of thickness L in
power of 1/L is constructed using the free-electron approximation and the model
of a potential well of finite depth. Accuracy of results in each order of the
expansion is analyzed. Size dependences of the work function and electronic
elastic force for Au and Na slabs are calculated. It is concluded that the work
function of low-dimensional metal structure is always smaller that of
semi-infinite metal sample.
A mechanism for the Coulomb instability of charged metal clusters, different
from Rayleigh's one, is discussed. The two-component model of a metallic
cluster yields the different critical sizes depending on a kind of charging
particles (electrons or ions). For the cuboid clusters, the electronic spectrum
quantization is taken into account. The calculated critical sizes of
Ag_{N}^{2-} and Au_{N}^{3-} clusters are in a good agreement with experimental
data. A qualitative explanation is suggested for the Coulomb explosion of
positively charged Na_{\N}^{n+} clusters at 3<n<5.Comment: 11 pages, 6 figures, 1 tabl
Weak Field Magnetoresistance in Quasi-One-Dimensional Systems
Theoretical studies are presented on weak localization effects and
magnetoresistance in quasi-one-dimensional systems with open Fermi surfaces.
Based on the Wigner representation, the magnetoresistance in the region of weak
field has been studied for five possible configurations of current and field
with respect to the one-dimensional axis. It has been indicated that the
anisotropy and its temperature dependences of the magnetoresistance will give
information on the degree of one-dimensionality and the phase relaxation time.Comment: pages 11, LaTeX, 5 figures, uses jpsj.sty. To be published in J.
Phys. Soc. Jpn. (Vol.67(1998) No.4); Added some references and a Note at Feb.
13 199
Two-particle Aharonov-Bohm effect and Entanglement in the electronic Hanbury Brown Twiss setup
We analyze a Hanbury Brown Twiss geometry in which particles are injected
from two independent sources into a mesoscopic electrical conductor. The set-up
has the property that all partial waves end in different reservoirs without
generating any single particle interference. There is no single particle
Aharonov-Bohm effect. However, exchange effects lead to two-particle
Aharonov-Bohm oscillations in current correlations. We demonstrate that the
two-particle Aharonov-Bohm effect is connected to orbital entanglement which
can be used for violation of a Bell Inequality.Comment: 4 pages, 2 figures, discussion of postselected electron-electron
entanglement adde
- …