1,823 research outputs found
Evidence for the Validity of the Berry-Robnik Surmise in a Periodically Pulsed Spin System
We study the statistical properties of the spectrum of a quantum dynamical
system whose classical counterpart has a mixed phase space structure consisting
of two regular regions separated by a chaotical one. We make use of a simple
symmetry of the system to separate the eigenstates of the time-evolution
operator into two classes in agreement with the Percival classification scheme
\cite{Per}. We then use a method firstly developed by Bohigas et. al.
\cite{BoUlTo} to evaluate the fractional measure of states belonging to the
regular class, and finally present the level spacings statistics for each class
which confirm the validity of the Berry-Robnik surmise in our model.Comment: 15 pages, 9 figures available upon request, Latex fil
Fidelity Decay as an Efficient Indicator of Quantum Chaos
Recent work has connected the type of fidelity decay in perturbed quantum
models to the presence of chaos in the associated classical models. We
demonstrate that a system's rate of fidelity decay under repeated perturbations
may be measured efficiently on a quantum information processor, and analyze the
conditions under which this indicator is a reliable probe of quantum chaos and
related statistical properties of the unperturbed system. The type and rate of
the decay are not dependent on the eigenvalue statistics of the unperturbed
system, but depend on the system's eigenvector statistics in the eigenbasis of
the perturbation operator. For random eigenvector statistics the decay is
exponential with a rate fixed precisely by the variance of the perturbation's
energy spectrum. Hence, even classically regular models can exhibit an
exponential fidelity decay under generic quantum perturbations. These results
clarify which perturbations can distinguish classically regular and chaotic
quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction
and discussion
A progressive diagonalization scheme for the Rabi Hamiltonian
A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit
interacting with a single-mode radiation field via a dipole interaction, is
proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly
using a progressive scheme that involves a finite set of one variable
polynomial equations. The scheme is especially efficient for lower part of the
spectrum. Some low-lying energy levels of the model with several sets of
parameters are calculated and compared to those provided by the recently
proposed generalized rotating-wave approximation and full matrix
diagonalization.Comment: 8pages, 1 figure, LaTeX. Accepted for publication in J. Phys. B: At.
Mol. Opt. Phy
Wigner Random Banded Matrices with Sparse Structure: Local Spectral Density of States
Random banded matrices with linearly increasing diagonal elements are
recently considered as an attractive model for complex nuclei and atoms. Apart
from early papers by Wigner \cite{Wig} there were no analytical studies on the
subject. In this letter we present analytical and numerical results for local
spectral density of states (LDOS) for more general case of matrices with a
sparsity inside the band. The crossover from the semicircle form of LDOS to
that given by the Breit-Wigner formula is studied in detail.Comment: Misprints are corrected and stylistic changes are made. To be
published in PR
Geometry of the 3-Qubit State, Entanglement and Division Algebras
We present a generalization to 3-qubits of the standard Bloch sphere
representation for a single qubit and of the 7-dimensional sphere
representation for 2 qubits presented in Mosseri {\it et
al.}\cite{Mosseri2001}. The Hilbert space of the 3-qubit system is the
15-dimensional sphere , which allows for a natural (last) Hopf
fibration with as base and as fiber. A striking feature is, as in
the case of 1 and 2 qubits, that the map is entanglement sensitive, and the two
distinct ways of un-entangling 3 qubits are naturally related to the Hopf map.
We define a quantity that measures the degree of entanglement of the 3-qubit
state. Conjectures on the possibility to generalize the construction for higher
qubit states are also discussed.Comment: 12 pages, 2 figures, final versio
RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars
We use results of our 3 year polarimetric monitoring program to investigate
the previously suggested connection between rotations of the polarization plane
in the optical emission of blazars and their gamma-ray flares in the GeV band.
The homogeneous set of 40 rotation events in 24 sources detected by {\em
RoboPol} is analysed together with the gamma-ray data provided by {\em
Fermi}-LAT. We confirm that polarization plane rotations are indeed related to
the closest gamma-ray flares in blazars and the time lags between these events
are consistent with zero. Amplitudes of the rotations are anticorrelated with
amplitudes of the gamma-ray flares. This is presumably caused by higher
relativistic boosting (higher Doppler factors) in blazars that exhibit smaller
amplitude polarization plane rotations. Moreover, the time scales of rotations
and flares are marginally correlated.Comment: 12 pages, 16 figures, accepted to MNRA
Phenotypic and genomic profiling of Staphylococcus argenteus in Canada and the United States and recommendations for clinical result reporting
Staphylococcus argenteus is a newly described species, formerly known as S. aureus clonal complex 75 (CC75). Here, we describe the largest collection of S. argenteus isolates in North America, highlighting identification challenges. We present phenotypic and genomic characteristics and provide recommendations for clinical reporting. Between 2017 and 2019, 22 isolates of S. argenteus were received at 2 large reference laboratories for identification. Identification with routine methods (biochemical, matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS], 16S rRNA gene analysis) proved challenging to confidently distinguish these isolates from S. aureus. Whole-genome sequencing analysis was employed to confirm identifications. Using several different sequence-based analyses, all clinical isolates under investigation were confirmed to be S. argenteus with clear differentiation from S. aureus. Seven of 22 isolates were recovered from sterile sites, 11 from nonsterile sites, and 4 from surveillance screens. While sequence types ST1223/coa type XV, ST2198/coa type XIV, and ST2793/coa type XId were identified among the Canadian isolates, the majority of isolates (73%) belonged to multilocus sequence types (MLST) ST2250/coa type XId and exhibited a high degree of homology at the genomic level. Despite this similarity, 5 spa types were identified among ST2250 isolates, demonstrating some diversity between strains. Several isolates carried mecA, as well as other resistance and virulence determinants (e.g., PVL, TSST-1) commonly associated with S. aureus. Based on our findings, the growing body of literature on S. argenteus, the potential severity of infections, and possible confusion associated with reporting, including use of incorrect breakpoints for susceptibility results, we make recommendations for clinical laboratories regarding this organism
Development of an approximate method for quantum optical models and their pseudo-Hermicity
An approximate method is suggested to obtain analytical expressions for the
eigenvalues and eigenfunctions of the some quantum optical models. The method
is based on the Lie-type transformation of the Hamiltonians. In a particular
case it is demonstrated that Jahn-Teller Hamiltonian can
easily be solved within the framework of the suggested approximation. The
method presented here is conceptually simple and can easily be extended to the
other quantum optical models. We also show that for a purely imaginary coupling
the Hamiltonian becomes non-Hermitian but -symmetric. Possible generalization of this approach is outlined.Comment: Paper prepared fo the "3rd International Workshop on Pseudo-Hermitian
Hamiltonians in Quantum Physics" June 2005 Istanbul. To be published in
Czechoslovak Journal of Physic
RoboPol: First season rotations of optical polarization plane in blazars
We present first results on polarization swings in optical emission of
blazars obtained by RoboPol, a monitoring program of an unbiased sample of
gamma-ray bright blazars specially designed for effective detection of such
events. A possible connection of polarization swing events with periods of high
activity in gamma rays is investigated using the dataset obtained during the
first season of operation. It was found that the brightest gamma-ray flares
tend to be located closer in time to rotation events, which may be an
indication of two separate mechanisms responsible for the rotations. Blazars
with detected rotations have significantly larger amplitude and faster
variations of polarization angle in optical than blazars without rotations. Our
simulations show that the full set of observed rotations is not a likely
outcome (probability ) of a random walk of the
polarization vector simulated by a multicell model. Furthermore, it is highly
unlikely () that none of our rotations is physically
connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure
- …