34 research outputs found

    Video-based patient monitoring system application of the system in intensive care unit

    Full text link
    The paper presents the video-based monitoring system to assess the physiological parameters and patient state in intensive care unit. It allows to measure thoracic and abdominal breathing movements, remote plethysmography signals, tissue perfusion, patient activity and changes in psycho-emotional state. Thus, the system provides a comprehensive assessment of patient state without contact. The system works in usual illumination conditions of intensive care unit and consists of a personal computer with specialized software and two low-cost Logitech C920 webcams with RGB sensors (8 bit per channel), 30 Hz sampling frequency and 640x480 pixel resolution. The webcams were placed at a distance of 80 cm above the patient’s body. The software provides automatic assessment of psychophysiological parameters and determination the following patterns: heart rate, heart rate variability, asystole and arrhythmias, breathing rate, spontaneous breathing recovery, breathing muscle tone and patient consciousness recovery, motor activity and control of ventilation parameters. The proposed system can be used as an additional diagnostic tool of anesthesia equipment for non-invasive patient monitoring in intensive care unit. Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedThe work was partially supported by Act 211 Government of the Russian Federation, contract 02.A 03.21.0006

    Remote photoplethysmography for the neuro-electrostimulation procedures monitoring the possibilities of remote photoplethysmography application for the analysis of high frequency parameters of heart rate variability

    Full text link
    The paper presents assessments of the remote photoplethysmography (rPPG) capabilities for evaluation of heart rate variability (HRV) for monitoring the neuro-electrostimulation procedures. In our experiment, 20 minute long videos of 20 people in office lighting conditions were analyzed. We checked the accuracy of well-known methods and some modern methods of rPPG. In this work, we evaluated the accuracy of rPPG methods in high frequency (HF) band (0.4 - 0.15 Hz), and sub-bands (0.4 - 0.3 Hz), (0.3 - 0.15 Hz). For the sub-band (0.3-0.15 Hz) HRV signals obtained with rPPG are better correlated with HRV signals obtained with electrocardiography (ECG). The results have shown that POS method provides the best HRV parameter evaluation. Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved.The work was supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0006. And partially supported by Russian Foundation for Assistance to Small Innovative Enterprises (FASIE) (Russia)

    Heart rate variabilitymeasurement using a smartphone camera

    Full text link
    In this article authors conduct a research targeting a possibilities of heart rate variability (HRV) measurement using smartphone camera. Factors strongly influencing the photoplethysmogram signal registered with smartphone camera are described. An algorithm for HRV signal measurement using photoplethysmogram is proposed. In order to perform simultaneous photoplethysmogram and electrocardiogram registration an experiment has been settled. Comparative analysis between HRV signals measured from photoplethysmogram and electrocardiogram is performed. Relying on such analysis quantitative estimates of quality of HRV signal measured from photoplethysmogram have been acquired. Demonstrated that proposed method has high accuracy. Results of this research will be used while developing an application that is capable of processing HRV signals in real time mode.В статье представлены результаты исследования возможности измерения вариабельности сердечного ритма (ВСР) при помощи камеры смартфона. Рассмотрены факторы, оказывающие сильное влияние на сигнал при регистрации фотоплетизмограммы с использованием камеры смартфона. Предложен алгоритм измерения сигнала ВСР по данным фотоплетизмограммы позволяет существенно уменьшить влияние описанных факторов, искажающих сигнал. Поставлен эксперимент, в ходе которого производилась одновременная регистрация фотоплетизмограммы (ФПГ) с использованием камеры смартфона и специального разработанного программного обеспечения, и электрокардиограммы (ЭКГ) с использованием электроэнцефалографа-анализатора. Проведен сравнительный анализ полученных сигналов ВСР ФПГ с данными измерений ВСР ЭКГ. По результатам сравнительного анализа приведены количественные оценки качества получаемого сигнала ВСР ФПГ. Показано, что предложенный алгоритм обработки ВСР ФПГ имеет высокую точность. Результаты исследования будут использованы при создании приложения, способного регистрировать и обрабатывать сигналы ВСР ФПГ в режиме реального времени

    Preliminary study of video-based respiratory rate assessment

    Full text link
    This paper presents the results of comparative study in physiological monitoring of human respiration rate between electrocardiography-based (ECG) method and video-based method of chest motion detection. The study involved 4 subjects aged from 30 to 70 years. During the study each subject lied on back. Total duration of the study conduct 1.5 hours. The results show that video-based and ECG-based respiration monitoring methods shows similar average respiration rate values. The outcome of the present work incites that video-based respiration assessment can be used as alternative or additional method of human respiration monitoring or diagnosingВ работе представлены результаты сравнительного анализа определения средней частоты дыхания человека полученной по данным сигнала электрокардиограммы (ЭКГ) и видеоизображений движений грудной клетки. В исследовании приняло участие 4 человека в возрасте от 30 до 70 лет. В ходе исследования испытуемые лежали на спине. Суммарная длительность исследований составила 1,5 часа. Показано, что оценки средней частоты дыхания по данным видеоизображений сопоставимы с оценками получаемыми по данным ЭКГ. Таким образом, метод определения дыхания по видеоизображениям может быть использован как альтернативный или дополнительный способ мониторинга или диагностики дыхания человека

    Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    Get PDF
    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo

    Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system

    Full text link
    Photoinduced intramolecular electron transfer in linked systems, (R,S)- and (S,S)-naproxen-N-methylpyrrolidine dyads, has been studied by means of spin chemistry methods [magnetic field effect and chemically induced dynamic nuclear polarization (CIDNP)]. The relative yield of the triplet state of the dyads in different magnetic field has been measured, and dependences of the high-field CIDNP of the N-methylpyrrolidine fragment on solvent polarity have been investigated. However, both (S,S)- and (R,S)-enantiomers demonstrate almost identical CIDNP effects for the entire range of polarity. It has been demonstrated that the main peculiarities of photoprocesses in this linked system are connected with the participation of singlet exciplex alongside with photoinduced intramolecular electron transfer in chromophore excited state quenching.This work was supported by the grants 08-03-00372 and 11-03-01104 of the Russian Foundation for Basic Research, and the grant of Priority Programs of the Russian Academy of Sciences, nr. 5.1.5.Magin, I.; Polyakov, N.; Khramtsova, E.; Kruppa, A.; Stepanov, A.; Purtov, P.; Leshina, T.... (2011). Spin chemistry investigation of peculiarities of photoinduced electron transfer in donor-acceptor linked system. Applied Magnetic Resonance. 41(2-4):205-220. https://doi.org/10.1007/s00723-011-0288-3S205220412-4J.S. Park, E. Karnas, K. Ohkubo, P. Chen, K.M. Kadish, S. Fukuzumi, C.W. Bielawski, T.W. Hudnall, V.M. Lynch, J.L. Sessler, Science 329, 1324–1327 (2010)S.Y. Reece, D.G. Nocera, Annu. Rev. Biochem. 78, 673–699 (2009)M.S. Afanasyeva, M.B. Taraban, P.A. Purtov, T.V. Leshina, C.B. Grissom, J. Am. Chem. Soc. 128, 8651–8658 (2006)M.A. Fox, M. Chanon, in Photoinduced Electron Transfer. C: Photoinduced Electron Transfer Reactions: Organic Substrates (Elsevier, New York, 1988), p. 754P.J. Hayball, R.L. Nation, F. Bochner, Chirality 4, 484–487 (1992)N. Suesa, M.F. Fernandez, M. Gutierrez, M.J. Rufat, E. Rotllan, L. Calvo, D. Mauleon, G. Carganico, Chirality 5, 589–595 (1993)A.M. Evans, J. Clin. Pharmacol. 36, 7–15 (1996)Y. Inoue, T. Wada, S. Asaoka, H. Sato, J.-P. Pete, Chem Commun. 4, 251–259 (2000)T. Yorozu, K. Hayashi, M. Irie, J. Am. Chem. Soc. 103, 5480–5548 (1981)N.J. Turro, in Modern Molecular Photochemistry (Benjamin/Cummings, San Francisco, 1978)K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, in Spin Polarization and Magnetic Field Effects in Radical Reactions (Akademiai Kiado, Budapest, 1984), p. 419E.A. Weiss, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. A 107, 3639–3647 (2003)A.S. Lukas, P.J. Bushard, E.A. Weiss, M.R. Wasielewski, J. Am. Chem. Soc. 125, 3921–3930 (2003)R. Nakagaki, K. Mutai, M. Hiramatsu, H. Tukada, S. Nakakura, Can. J. Chem. 66, 1989–1996 (1988)M.C. Jim′enez, U. Pischel, M.A. Miranda, J. Photochem. Photobiol. C Photochem. Rev. 8, 128–142 (2007)S. Abad, U. Pischel, M.A. Miranda, Photochem. Photobiol. Sci. 4, 69–74 (2005)U. Pischel, S. Abad, L.R. Domingo, F. Bosca, M.A. Miranda, Angew. Chem. Int. Ed. 42, 2531–2534 (2003)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 101, 1639–1641 (1979)G.L. Closs, R.J. Miller, J. Am. Chem. Soc. 103, 3586–3588 (1981)M. Goez, Chem. Phys. Lett. 188, 451–456 (1992)I.F. Molokov, Y.P. Tsentalovich, A.V. Yurkovskaya, R.Z. Sagdeev, J. Photochem. Photobiol. A 110, 159–165 (1997)U. Pischel, S. Abad, M.A. Miranda, Chem. Commun. 9, 1088–1089 (2003)H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 57, 322–328 (1984)Y. Sakaguchi, H. Hayashi, S. Nagakura, Bull. Chem. Soc. Jpn. 53, 39–42 (1980)H. Yonemura, H. Nakamura, T. Matsuo, Chem. Phys. Lett. 155, 157–161 (1989)N. Hata, M. Hokawa, Chem. Lett. 10, 507–510 (1981)M. Shiotani, L. Sjoeqvist, A. Lund, S. Lunell, L. Eriksson, M.B. Huang, J. Phys. Chem. 94, 8081–8090 (1990)E. Schaffner, H. Fischer, J. Phys. Chem. 100, 1657–1665 (1996)Y. Mori, Y. Sakaguchi, H. Hayashi, Chem. Phys. Lett. 286, 446–451 (1998)I.M. Magin, A.I. Kruppa, P.A. Purtov, Chem. Phys. 365, 80–84 (2009)K.K. Barnes, Electrochemical Reactions in Nonaqueous Systems (M. Dekker, New York, 1970), p. 560J. Bargon, J. Am. Chem. Soc. 99, 8350–8351 (1977)M. Goez, I. Frisch, J. Phys. Chem. A 106, 8079–8084 (2002)A.K. Chibisov, Russ. Chem. Rev. 50, 615–629 (1981)J. Goodman, K. Peters, J. Am. Chem. Soc. 107, 1441–1442 (1985)H. Cao, Y. Fujiwara, T. Haino, Y. Fukazawa, C.-H. Tung, Y. Tanimoto, Bull. Chem. Soc. Jpn. 69, 2801–2813 (1996)P.A. Purtov, A.B. Doktorov, Chem. Phys. 178, 47–65 (1993)A.I. Kruppa, O.I. Mikhailovskaya, T.V. Leshina, Chem. Phys. Lett. 147, 65–71 (1988)M.E. Michel-Beyerle, R. Haberkorn, W. Bube, E. Steffens, H. Schröder, H.J. Neusser, E.W. Schlag, H. Seidlitz, Chem. Phys. 17, 139–145 (1976)K. Schulten, H. Staerk, A. Weller, H.-J. Werner, B. Nickel, Z. Phys. Chem. 101, 371–390 (1976)K. Gnadig, K.B. Eisenthal, Chem. Phys. Lett. 46, 339–342 (1977)T. Nishimura, N. Nakashima, N. Mataga, Chem. Phys. Lett. 46, 334–338 (1977)M.G. Kuzmin, I.V. Soboleva, E.V. Dolotova, D.N. Dogadkin, High Eng. Chem. 39, 86–96 (2005
    corecore