270 research outputs found

    Observation of surface states on heavily indium doped SnTe(111), a superconducting topological crystalline insulator

    Get PDF
    The topological crystalline insulator tin telluride is known to host superconductivity when doped with indium (Sn1x_{1-x}Inx_{x}Te), and for low indium contents (x=0.04x=0.04) it is known that the topological surface states are preserved. Here we present the growth, characterization and angle resolved photoemission spectroscopy analysis of samples with much heavier In doping (up to x0.4x\approx0.4), a regime where the superconducting temperature is increased nearly fourfold. We demonstrate that despite strong p-type doping, Dirac-like surface states persist

    Role of hydrogen peroxide in intra-operative wound preparation based on an in vitro fibrin clot degradation model

    Get PDF
    Three per cent hydrogen peroxide (H2O2) is widely used to irrigate acute and chronic wounds in the surgical setting and clinical experience tells us that it is more effective at removing dried-on blood than normal saline alone. We hypothesise that this is due to the effect of H2O2 on fibrin clot architecture via fibrinolysis. We investigate the mechanisms and discuss the clinical implications using an in vitro model. Coagulation assays with normal saline (NaCl), 1% and 3% concentrations of H2O2 were performed to determine the effect on fibrin clot formation. These effects were confirmed by spectrophotometry. The effects of 1%, 3% and 10% H2O2 on the macroscopic and microscopic features of fibrin clots were assessed at set time intervals and compared to a NaCl control. Quantitative analysis of fibrin networks was undertaken to determine the fibre length, diameter, branch point density and pore size. Fibrin clots immersed in 1%, 3% and 10% H2O2 demonstrated volume losses of 0.09-0.25mm3/min, whereas those immersed in the normal saline gained in volume by 0.02±0.13 mm3/min. Quantitative analysis showed that H2O2 affects the structure of the fibrin clot in a concentration-dependent manner, with the increase in fibre length, diameter and consequently pore sizes. Our results support our hypothesis that the efficacy of H2O2 in cleaning blood from wounds is enhanced by its effects on fibrin clot architecture in a concentration- and time-dependent manner. The observed changes in fibre size and branch point density suggest that H2O2 is acting on the quaternary structure of the fibrin clot, most likely via its effect on cross-linking of the fibrin monomers and may therefore be of benefit for the removal of other fibrin-dependent structures such as wound slough

    Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions

    Get PDF
    In this work, the hydrogen evolution reaction (HER) was studied on Ru coated Ti2AlC electrodes in 1.0 mol dm(-3) H2SO4 at 25 degrees C. Ti2AlC was found to be a highly stable substrate in sulfuric acid solutions due to the formation of a passivating oxide layer on the surface, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis of as-prepared and anodically treated Ti2AlC samples. Ru films were electrodeposited onto Ti2AlC substrates by cycling the potential of Ti2AlC in the solution containing 0.01 mol dm(-3) RuCl3 + 0.1 mol dm(-3) H2SO4 between -0.5 V and 0.4 V vs. a saturated calomel electrode (SCE) at the sweep rate of 20 mV s(-1). Four Ru/Ti2AlC samples were prepared, obtained at 5, 10, 15 and 20 cycles of Ru electrodeposition. Characterization of samples was performed by scanning electron microscopy (SEM) and cyclic voltammetry (CV), while the thickness of the electrodeposited Ru layers was determined by atomic force microscopy (AFM). It was found that the most compact sample with the thickness of about 0.42 mu m was obtained after 5 cycles. Electrochemical impedance spectroscopy (EIS) and steady-state polarization measurements showed that all Ru/Ti2AlC electrodes were exceptionally active for the HER. A Tafel slope of about -60 mV dec(-1) was observed on all polarization curves in the range of high cathodic current densities. Based on formal kinetics analysis, an appropriate mechanism for the HER on Ru/Ti2AlC was suggested.This is the peer-reviewed version of the article: Jovic, B. M., Jović, V. D., Lačnjevac, U., Stevanović, S., Kovac, J., Radovic, M.,& Krstajić, N. V. (2016). Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions. Journal of Electroanalytical Chemistry, Elsevier, 766, 78-86. [https://doi.org/10.1016/j.jelechem.2016.01.038]The published version: [https://cer.ihtm.bg.ac.rs/handle/123456789/2012

    Light localization in nonuniformly randomized lattices

    Full text link
    We address Anderson localization of light in disordered optical lattices where the disorder strength varies across the transverse direction. Such variation changes the preferred domains where formation of localized eigenmodes is most probable, hence drastically impacting light localization properties. Thus, step-like disorder results in formation of modes with different decay rates at both sides of the interface, while a smoothly varying disorder yields appearance of modes that are extended within weakly disordered domains and rapidly fade away in strongly disordered domains.Comment: 3 pages, 5 figures, to appear in Optics Letter

    Lipid profile and left ventricular geometry pattern in obese children

    Get PDF
    Background: Left ventricular hypertrophy (LVH) is an important risk factor for cardiovascular and all-cause mortality. Previous studies reported conflicting results concerning the relationship between serum lipid levels and left ventricular geometry pattern. We sought to explore the relationship between standard serum lipid profile measures with left ventricular geometry pattern in obese children. Patients and methods: In this cross-sectional study, a total of 70 obese children were examined. Fasting blood samples were taken to measure total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglycerides (TGs), glucose, and insulin. Based on these values TG/HDL ratio, BMI and HOMA index were calculated. We also measured the average 24-h ambulatory systolic blood pressure (SBP) and two-dimensional (2/D) transthoracic echocardiography was performed to determine left ventricular mass index (LVMI) and relative wall thickness (RWT). Multiple regression analyses were conducted to explore relationships between study variables and the LVMI or RWT as outcome variables. The final model with LVMI included TG/HDL ratio, BMI, 24 h-average SBP, age and sex, while for the RWT we included BMI, insulin, age and sex. Results: Our study included 70 children (65.71% boys and 34.29% girls) median age (14 years, IQR = 12-16)." We demonstrated independent and positive association of TG/HDL ratio, BMI and 24 h-average SBP with LVMI (effect = 3.65, SE = 1.32, p < 0.01; effect = 34.90, SE = 6.84, p < 0.01; effect = 0.32, SE = 0.12, p < 0.01, respectively). On the other hand, in model with RWT as outcome variable, only BMI and insulin were significantly linked (BMI: effect = 13.07, SE = 5.02, p = 0.01 Insulin: effect = 2.80, SE = 0.97). Conclusion: Increased TG/HDL ratio in obese children is associated with the development of eccentric left ventricular hypertrophy while increased BMI and insulin were associated with concentric left ventricular hypertophy

    Sem/Edx and Xrd Characterization of Silver Nanocrystalline Thin Film Prepared from Organometallic Solution Precursor

    Get PDF
    The Ag nano-structured thin films prepared on flat glass substrates have been studied. The ball-like silver nanoparticles have been synthesized in large quantity by using a modified method of hydrolytic decomposition of silver complexes with amino types ligands formed in ethanol aqueous solution. SEM analysis revealed that Ag nanoparticles are all sphere shaped with bimodal size (40 and 70 nm) distribution. The results of XRD powder pattern examination show that Ag nanoparticles are pure phase, well crystallized. The unit cell dimensions measured on synthesized Ag nano films show small but frequent contraction in comparison to Ag metal standard

    Observation of the gradual transition from one-dimensional to two-dimensional Anderson localization

    Full text link
    We study the gradual transition from one-dimensional to two-dimensional Anderson localization upon transformation of the dimensionality of disordered waveguide arrays. An effective transition from one- to two-dimensional system is achieved by increasing the number of rows forming the arrays. We observe that, for a given disorder level, Anderson localization becomes weaker with increasing number of rows, hence the effective dimension.Comment: 4 pages, 3 figures, to appear in Optics Letter

    Anderson localization in Bragg-guiding arrays with negative defects

    Full text link
    We show that Anderson localization is possible in waveguide arrays with periodically-spaced defect waveguides having lower refractive index. Such localization is mediated by Bragg reflection, and it takes place even if diagonal or off-diagonal disorder affects only defect waveguides. For off-diagonal disorder the localization degree of the intensity distributions monotonically grows with increasing disorder. In contrast, under appropriate conditions, increasing diagonal disorder may result in weaker localization.Comment: 4 pages, 5 figures, to appear in Optics Letter
    corecore