264 research outputs found
Correlations derived from Modern Nucleon-Nucleon Potentials
Various modern nucleon-nucleon (NN) potentials yield a very accurate fit to
the nucleon-nucleon scattering phase shifts. The differences between these
interactions in describing properties of nuclear matter are investigated.
Various contributions to the total energy are evaluated employing the Hellmann
- Feynman theorem. Special attention is paid to the two-nucleon correlation
functions derived from these interactions. Differences in the predictions of
the various interactions can be traced back to the inclusion of non-local
terms.Comment: 7 pages, 4 figures include
axial-vector mixing and charge symmetry breaking
Phenomenological Lagrangians that exhibit (broken) chiral symmetry as well as
isospin violation suggest short-range charge symmetry breaking (CSB)
nucleon-nucleon potentials with a \mbox{\boldmath \sigma}_1
\!\cdot\!\mbox{\boldmath \sigma}_2 structure. This structure could be
realized by the mixing of axial-vector () mesons in a single-meson
exchange picture. The Coleman-Glashow scheme for charge
symmetry breaking applied to meson and baryon mass splittings suggests
a universal scale. This scale can be extended to nonstrange CSB
transitions of size GeV. The
resulting nucleon-nucleon axial-vector meson exchange CSB potential then
predicts effects which are small.Comment: 14 pages. To appear in Phys. Lett.
Strange nuclear matter within Brueckner-Hartree-Fock Theory
We have developed a formalism for microscopic Brueckner-type calculations of
dense nuclear matter that includes all types of baryon-baryon interactions and
allows to treat any asymmetry on the fractions of the different species (n, p,
, , , , and ). We present
results for the different single-particle potentials focussing on situations
that can be relevant in future microscopic studies of beta-stable neutron star
matter with strangeness. We find the both the hyperon-nucleon and
hyperon-hyperon interactions play a non-negligible role in determining the
chemical potentials of the different species.Comment: 36 pages, LateX, includes 8 PostScript figures, (submitted to PRC
Comment on Neutron-Proton Spin-Correlation Parameter A_{ZZ} at 68 Mev
We present two arguments indicating that the large value for the
mixing parameter at 50 MeV, which the Basel group extracted from their recent
measurement, may be incorrect. First, there are nucleon-nucleon (NN)
potentials which predict the at 50 MeV substantially below the
Basel value and reproduce the Basel data accurately. Second, the large
value for at 50 MeV proposed by the Basel group can only be
explained by a model for the NN interaction which is very unrealistic (no
-meson and essentially a point-like vertex) and overpredicts the
in the energy range where it is well determined (150--500 MeV) by
a factor of two.Comment: 6 pages text (LaTex) and 2 figures (paper, will be faxed upon
request), UI-NTH-930
Can the magnetic moment contribution explain the A_y puzzle?
We evaluate the full one-photon-exchange Born amplitude for scattering.
We include the contributions due to the magnetic moment of the proton or
neutron, and the magnetic moment and quadrupole moment of the deuteron. It is
found that the inclusion of the magnetic-moment interaction in the theoretical
description of the scattering observables cannot resolve the long-standing
puzzle.Comment: 7 pages, 2 Postscript figures; to appear in Phys.Rev.
Analysis of NN Amplitudes up to 2.5 GeV: An Optical Model and Geometric Interpretation
We analyse the SM97 partial wave amplitudes for nucleon--nucleon (NN)
scattering to 2.5 GeV, in which resonance and meson production effects are
evident for energies above pion production threshold. Our analyses are based
upon boson exchange or quantum inversion potentials with which the
sub-threshold data are fit perfectly. Above 300 MeV they are extrapolations, to
which complex short ranged Gaussian potentials are added in the spirit of the
optical models of nuclear physics and of diffraction models of high energy
physics. The data to 2.5 GeV are all well fit. The energy dependences of these
Gaussians are very smooth save for precise effects caused by the known
and N resonances. With this approach, we confirm that the geometrical
implications of the profile function found from diffraction scattering are
pertinent in the regime 300 MeV to 2.5 GeV and that the overwhelming part of
meson production comes from the QCD sector of the nucleons when they have a
separation of their centres of 1 to 1.2 fm. This analysis shows that the
elastic NN scattering data above 300 MeV can be understood with a local
potential operator as well as has the data below 300 MeV.Comment: 49 pages, including 23 figures, LaTeX2e/RevTeX/ps fil
Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV
In this updated and expanded version of our delayed Comment we show that the
np backward cross section, as presented by the Uppsala group, is seriously
flawed (more than 25 sd.). The main reason is the incorrect normalization of
the data. We show also that their extrapolation method, used to determine the
charged piNN coupling constant, is a factor of about 10 less accurate than
claimed by Ericson et al. The large extrapolation error makes the determination
of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended
version of the Comment published in Phys. Rev. Letters 81, 5253 (1998
- …