9,559 research outputs found

    Study of hot hardness characteristics of tool steels

    Get PDF
    Hardness measurements of tool steel materials in electric furnace at elevated temperatures and low oxygen environment are discussed. Development of equation to predict short term hardness as function of intial room temperature hardness of steel is reported. Types of steel involved in the process are identified

    Common bearing material has highest fatigue life at moderate temperature

    Get PDF
    AISI 52100, a high carbon chromium steel, has the longest fatigue life of eight bearing materials tested. Fatigue lives of the other materials ranged from 7 to 78 percent of the fatigue life of AISI 52100 at a temperature of 340 K (150 F)

    Antimicrobial susceptibility testing of dermatophytes - Comparison of the agar macrodilution and broth microdilution tests

    Get PDF
    Fifty dermatophyte strains, recently obtained from clinical material, belonging to 4 different species were examined for their susceptibility to 5 systemic or topical antimycotic agents using both an agar macrodilution and a broth microdilution test. Antimycotics compared were griseofulvin, itraconazole, sertaconazole, terbinafine and ciclopiroxolamine. A comparison of the minimum inhibitory concentrations (MIC) clearly showed differences between the two test methods applied. For all 5 antimycotics, MIC data were three- to seventyfold lower in the microdilution test system. These differences, depending on the test method, have to be taken into account when comparing MIC data in the literature or when relating the in vitro data to the tissue concentrations determined in vivo

    Short-term hot hardness characteristics of rolling-element steels

    Get PDF
    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels

    Quark-antiquark pair production in space-time dependent fields

    Full text link
    Fermion-antifermion pair-production in the presence of classical fields is described based on the retarded and advanced fermion propagators. They are obtained by solving the equation of motion for the Dirac Green's functions with the respective boundary conditions to all orders in the field. Subsequently, various approximation schemes fit for different field configurations are explained. This includes longitudinally boost-invariant forms. Those occur frequently in the description of ultrarelativistic heavy-ion collisions in the semiclassical limit. As a next step, the gauge invariance of the expression for the expectation value of the number of produced fermion-antifermion pairs as a functional of said propagators is investigated in detail. Finally, the calculations are carried out for a longitudinally boost-invariant model-field, taking care of the last issue, especially.Comment: 32 pages, 8 figures, revised versio

    Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory

    Get PDF
    We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (I) the adsorption isotherm for a planar liquid film, and (II) the normal force balance at the contact line. We find that the height profile obtained using (I) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (II) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20, 40 and 60 degrees

    Precision measurement of the branching ratio in the 6P3/2 decay of BaII with a single trapped ion

    Full text link
    We present a measurement of the branching ratios from the 6P3/2 state of BaII into all dipoleallowed decay channels (6S1/2, 5D3/2 and 5D5/2). Measurements were performed on single 138Ba+ ions in a linear Paul trap with a frequency-doubled mode-locked Ti:Sapphire laser resonant with the 6S1/2->6P3/2 transition at 455 nm by detection of electron shelving into the dark 5D5/2 state. By driving a pi Rabi rotation with a single femtosecond pulse, a absolute measurement of the branching ratio to 5D5/2 state was performed. Combined with a measurement of the relative decay rates into 5D3/2 and 5D5/2 states performed with long trains of highly attenuated 455 nm pulses, it allowed the extraction of the absolute ratios of the other two decays. Relative strengths normalized to unity are found to be 0.756+/-0.046, 0.0290+/-0.0015 and 0.215+/-0.0064 for 6S1/2, 5D3/2 and 5D5/2 respectively. This approximately constitutes a threefold improvement over the best previous measurements and is a sufficient level of precision to compare to calculated values for dipole matrix elements.Comment: 6 pages, 5 figures, 1 tabl

    Nudged Elastic Band calculation of the binding potential for liquids at interfaces

    Get PDF
    The wetting behavior of a liquid on solid substrates is governed by the nature of the effective interaction between the liquid-gas and the solid-liquid interfaces, which is described by the binding or wetting potential g(h)g(h) which is an excess free energy per unit area that depends on the liquid film height hh. Given a microscopic theory for the liquid, to determine g(h)g(h) one must calculate the free energy for liquid films of any given value of hh; i.e. one needs to create and analyze out-of-equilibrium states, since at equilibrium there is a unique value of hh, specified by the temperature and chemical potential of the surrounding gas. Here we introduce a Nudged Elastic Band (NEB) approach to calculate g(h)g(h) and illustrate the method by applying it in conjunction with a microscopic lattice density functional theory for the liquid. We show too that the NEB results are identical to those obtained with an established method based on using a fictitious additional potential to stabilize the non-equilibrium states. The advantages of the NEB approach are discussed.Comment: 5 pages, 2 figure
    • …
    corecore