6 research outputs found
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π΄ΠΎΠΊΡ-ΡΡΠ°ΡΡΡΠ° ΠΊΠΎΡΠ½Π·ΠΈΠΌΠ° Q10 ΠΊΠ°ΠΊ Π±ΠΈΠΎΠΌΠ°ΡΠΊΠ΅ΡΠ° ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ°
The article examines the role of ubiquinone as a redox molecule whose functions consist in electron transport in the mitochondrial respiratory chain and regeneration of endogenous antioxidants. Changes in electron redox pathways cause uncontrolled release of reactive oxygen species, which leads to oxidative stress and development of pathologies. The objective of the study was to determine the content of coenzyme Q10 and its redox status in the human body as a biomarker of oxidative stress in various pathologies. This was achieved by assessing and consolidating data on changes in concentrations of the oxidized, reduced ubiquinone forms and total ubiquinone in various pathologies. Total serum ubiquinone was reduced in patients with chronic heart failure (0.68 ΞΌmol/L) compared with the control group (0.97 ΞΌmol/L). The redox status, expressed as the [ubiquinol]/ [ubiquinone] concentration ratio, decreased in patients with coronary heart disease (0.49 Β± 0.34), diabetes (0.26 Β± 0.16) compared with the healthy subjects (1.23β1.41). A negative correlation with malonic dialdehyde was observed. The authors analysed the possibility of assessing the efficacy of statin therapy by plasma ubiquinone concentration in patients. Patients with hyperlipidemia who received statins showed a statistically significant reduction in ubiquinol concentration after taking the drug (from 0.81 to 0.46 ΞΌg/mL) and the [ubiquinone]/[total ubiquinone] ratio (from 11 to 10 %), which confirms the potential mechanism of statinassociated muscle injury development. Thus, coenzyme Q10 redox status, as well as the concentrations of oxidized, reduced and total ubiquinone can be effective biomarkers of oxidative stress in cardiovascular diseases, diabetes, as well as an important indicator in evaluating the efficacy of hyperlipidemia treatment.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΡΠΎΠ»Ρ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½Π° ΠΊΠ°ΠΊ ΡΠ΅Π΄ΠΎΠΊΡ-ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ, ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠ΅ΡΠ΅Π½ΠΎΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² Π² Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠΈ ΠΈ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ
Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°Π½ΡΠΎΠ². ΠΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π΄ΠΎΠΊΡ-ΠΏΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² Π²ΡΠ·ΡΠ²Π°Π΅Ρ Π½Π΅ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΠΌΡΡ Π²ΡΡΠ°Π±ΠΎΡΠΊΡ Π°ΠΊΡΠΈΠ²Π½ΡΡ
ΡΠΎΡΠΌ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π°, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ ΡΡΡΠ΅ΡΡΡ ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ. Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ β Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΊΠΎΡΠ½Π·ΠΈΠΌΠ° Q10 ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΅Π³ΠΎ ΡΠ΅Π΄ΠΎΠΊΡ-ΡΡΠ°ΡΡΡΠ° Π² ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΊΠ°ΠΊ Π±ΠΈΠΎΠΌΠ°ΡΠΊΠ΅ΡΠ° ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ° ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΡ
, Π΄Π»Ρ ΡΠ΅Π³ΠΎ Π±ΡΠ»ΠΈ ΠΎΡΠ΅Π½Π΅Π½Ρ ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΎΠΊΠΈΡΠ»Π΅Π½Π½ΠΎΠΉ, Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΡ ΠΈ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½Π° ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΡ
. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½Π° Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ Π±ΡΠ»ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΎ (0,68 ΠΌΠΊΠΌΠΎΠ»Ρ/Π») ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΠΎΠΉ (0,97 ΠΌΠΊΠΌΠΎΠ»Ρ/Π»). Π Π΅Π΄ΠΎΠΊΡ-ΡΡΠ°ΡΡΡ, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΉ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ [ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ»]/[ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½], ΡΠ½ΠΈΠΆΠ°Π»ΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° (0,49 Β± 0,34), Π΄ΠΈΠ°Π±Π΅ΡΠΎΠΌ (0,26 Β± 0,16) ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ Π·Π΄ΠΎΡΠΎΠ²ΡΠΌΠΈ Π»ΠΈΡΠ°ΠΌΠΈ (1,23β1,41). ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°Π±Π»ΡΠ΄Π°Π»Π°ΡΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ Ρ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΡΠΌ Π΄ΠΈΠ°Π»ΡΠ΄Π΅Π³ΠΈΠ΄ΠΎΠΌ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡΠ°ΡΠΈΠ½ΠΎΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΏΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ². Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³ΠΈΠΏΠ΅ΡΠ»ΠΈΠΏΠΈΠ΄Π΅ΠΌΠΈΠ΅ΠΉ, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
ΡΡΠ°ΡΠΈΠ½Ρ, Π±ΡΠ»ΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ»Π° ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΈΠ΅ΠΌΠ° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° (Ρ 0,81 Π΄ΠΎ 0,46 ΠΌΠΊΠ³/ΠΌΠ») ΠΈ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ [ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½]/[ΠΎΠ±ΡΠΈΠΉ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½] (Ρ 11 Π΄ΠΎ 10 %), ΡΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅Ρ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΡΡΠ°ΡΠΈΠ½-Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΌΡΡΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅Π΄ΠΎΠΊΡ-ΡΡΠ°ΡΡΡ ΠΊΠΎΡΠ½Π·ΠΈΠΌΠ° Q10, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΎΠΊΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ, Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠ±ΠΈΡ
ΠΈΠ½ΠΎΠ½Π° ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌΠΈ Π±ΠΈΠΎΠΌΠ°ΡΠΊΠ΅ΡΠ°ΠΌΠΈ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΡΡΠ° ΠΏΡΠΈ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎ-ΡΠΎΡΡΠ΄ΠΈΡΡΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ
, Π΄ΠΈΠ°Π±Π΅ΡΠ΅, Π° ΡΠ°ΠΊΠΆΠ΅ Π²Π°ΠΆΠ½ΡΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΠΏΡΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ Π³ΠΈΠΏΠ΅ΡΠ»ΠΈΠΏΠΈΠ΄Π΅ΠΌΠΈΠΈ
Evaluation of Coenzyme Q10 Redox Status as a Biomarker of Oxidative Stress
The article examines the role of ubiquinone as a redox molecule whose functions consist in electron transport in the mitochondrial respiratory chain and regeneration of endogenous antioxidants. Changes in electron redox pathways cause uncontrolled release of reactive oxygen species, which leads to oxidative stress and development of pathologies. The objective of the study was to determine the content of coenzyme Q10 and its redox status in the human body as a biomarker of oxidative stress in various pathologies. This was achieved by assessing and consolidating data on changes in concentrations of the oxidized, reduced ubiquinone forms and total ubiquinone in various pathologies. Total serum ubiquinone was reduced in patients with chronic heart failure (0.68 ΞΌmol/L) compared with the control group (0.97 ΞΌmol/L). The redox status, expressed as the [ubiquinol]/ [ubiquinone] concentration ratio, decreased in patients with coronary heart disease (0.49 Β± 0.34), diabetes (0.26 Β± 0.16) compared with the healthy subjects (1.23β1.41). A negative correlation with malonic dialdehyde was observed. The authors analysed the possibility of assessing the efficacy of statin therapy by plasma ubiquinone concentration in patients. Patients with hyperlipidemia who received statins showed a statistically significant reduction in ubiquinol concentration after taking the drug (from 0.81 to 0.46 ΞΌg/mL) and the [ubiquinone]/[total ubiquinone] ratio (from 11 to 10 %), which confirms the potential mechanism of statinassociated muscle injury development. Thus, coenzyme Q10 redox status, as well as the concentrations of oxidized, reduced and total ubiquinone can be effective biomarkers of oxidative stress in cardiovascular diseases, diabetes, as well as an important indicator in evaluating the efficacy of hyperlipidemia treatment
THE MODERN METHODS OF ANALYSIS OF OXIDIZED AND REDUCED FORMS OF COENZYME Qββ IN BIOMATERIAL (REVIEW)
In the human body, coenzyme Q10 is in the oxidized and reduced forms and can be found in every organ. The review describes modern HPLC methods of coenzyme Q10 analysis using electrochemical, spectrophotometric and mass spectrometric detectors. In the article we present information on sampling, preparation of biomaterial for analysis and preservation of coenzyme Q10 stability in biomaterial. It is carried out a comparative analysis of the determination methodologies for the oxidized and reduced forms of coenzyme Q10 by its sensitivity and selectivity
Differences in the pharmacokinetics of ibuprofen in monoand multi-component drugs
The article reports the results of the study which investigated the pharmacokinetics of mono- and multi-component ibuprofen-containing drugs following single oral administration to healthy volunteers. Plasma concentration of ibuprofen was determined by HPLC with spectrophotometric detection. The main pharmacokinetic parameters - Cmax, Tmax, AUC0-t, AUC0-Β₯, MRT, Kel, TΠ
- were calculated after single oral administration of the tested drugs. The pharmacokinetics of Ibuprofen/mono and Ibuprofen (pitofenone+fenpiverinium bromide) after single administration did not demonstrate any statistically significant differences, while the combination drug Ibuprofen/paracetamol did have statistically significant differences in pharmacokinetics as compared to the monocomponent Ibuprofen drug
Π Π°Π·Π»ΠΈΡΠΈΡ Π² ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ΅ ΠΈΠ±ΡΠΏΡΠΎΡΠ΅Π½Π° Π² ΠΌΠΎΠ½ΠΎ- ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ°Ρ
The article reports the results of the study which investigated the pharmacokinetics of mono- and multi-component ibuprofen-containing drugs following single oral administration to healthy volunteers. Plasma concentration of ibuprofen was determined by HPLC with spectrophotometric detection. The main pharmacokinetic parameters - Cmax, Tmax, AUC0-t, AUC0-Β₯, MRT, Kel, TΠ
- were calculated after single oral administration of the tested drugs. The pharmacokinetics of Ibuprofen/mono and Ibuprofen (pitofenone+fenpiverinium bromide) after single administration did not demonstrate any statistically significant differences, while the combination drug Ibuprofen/paracetamol did have statistically significant differences in pharmacokinetics as compared to the monocomponent Ibuprofen drug.ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΌΠΎΠ½ΠΎ- ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΈΠ±ΡΠΏΡΠΎΡΠ΅Π½Π° ΠΏΠΎΡΠ»Π΅ ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ° Π·Π΄ΠΎΡΠΎΠ²ΡΠΌΠΈ Π΄ΠΎΠ±ΡΠΎΠ²ΠΎΠ»ΡΡΠ°ΠΌΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΈΠ±ΡΠΏΡΠΎΡΠ΅Π½Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΡΠΎ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ. Π Π°ΡΡΡΠΈΡΠ°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ° Π²Π½ΡΡΡΡ ΠΈΠ·ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ²: Cmax, Tmax, AUC0-t, AUC0-Β₯, MRT, Kel, TΠ
. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΠΠ±ΡΠΏΡΠΎΡΠ΅Π½/ΠΌΠΎΠ½ΠΎ ΠΈ ΠΠ±ΡΠΏΡΠΎΡΠ΅Π½/(ΠΏΠΈΡΠΎΡΠ΅Π½ΠΎΠ½+ΡΠ΅Π½ΠΏΠΈΠ²Π΅ΡΠΈΠ½ΠΈΡ Π±ΡΠΎΠΌΠΈΠ΄) ΠΏΠΎΡΠ»Π΅ ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ° Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΡ
ΡΠ°Π·Π»ΠΈΡΠΈΠΉ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΏΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΠ±ΡΠΏΡΠΎΡΠ΅Π½/ΠΏΠ°ΡΠ°ΡΠ΅ΡΠ°ΠΌΠΎΠ» ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΡ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΌΠΎΠ½ΠΎΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠΌ ΠΈΠ±ΡΠΏΡΠΎΡΠ΅Π½Π°
Coenzyme Q10 in Metabolic syndrome
Metabolic syndrome (MS) has become a global health issue due to affect a high percentage of people in most of the countries. MS can be defined as the presence of three of the following factors: obesity, high triglyceride and cholesterol levels, low HDL cholesterol, high blood pressure or high fasting plasma glucose. All these factors increase the risk of cardiovascular disease, diabetes type II, some kind of cancers, sleep abnormalities or physical incapacity among other. Several factors have been identified in the aetiology of MS such as dietary patterns, sedentary lifestyle, genetic background, microbiota, socioeconomic status or age. Different treatments have been proposed for the treatment of MS, but, until today, there is no efficient solution. CoQ10 has emerged as a potential way in MS treatment endorsed by several clinical trials have shown improvements in lipid profile, glucose control, insulin homeostasis and hypertension control in MS patients. The molecular mechanism that could explain these improvements would be the antioxidant capacity of CoQ10 inhibiting oxidative stress that it is present in MS. Additionally, the proportion of CoQ10H2 could be also a crucial role in the protection again MS components. Furthermore, CoQ10 administration could be also helpful in the management of mitochondrial dysfunction associated to MS