2,582 research outputs found
A heuristic quantum theory of the integer quantum Hall effect
Contrary to common belief, the current emitted by a contact embedded in a
two-dimensional electron gas (2DEG) is quantized in the presence of electric
and magnetic fields. This observation suggests a simple, clearly defined model
for the quantum current through a Hall device that does not invoke disorder or
interactions as the cause of the integer quantum Hall effect (QHE), but is
based on a proper quantization of the classical electron drift motion. The
theory yields a quantitative description of the breakdown of the QHE at high
current densities that is in agreement with experimental data. Furthermore,
several of its key points are in line with recent findings of experiments that
address the dependency of the QHE on the 2DEG bias voltage, results that are
not easily explained within the framework of conventional QHE models.Comment: 20 pages, 6 figure
Exact infinite-time statistics of the Loschmidt echo for a quantum quench
The equilibration dynamics of a closed quantum system is encoded in the
long-time distribution function of generic observables. In this paper we
consider the Loschmidt echo generalized to finite temperature, and show that we
can obtain an exact expression for its long-time distribution for a closed
system described by a quantum XY chain following a sudden quench. In the
thermodynamic limit the logarithm of the Loschmidt echo becomes normally
distributed, whereas for small quenches in the opposite, quasi-critical regime,
the distribution function acquires a universal double-peaked form indicating
poor equilibration. These findings, obtained by a central limit theorem-type
result, extend to completely general models in the small-quench regime.Comment: 4 pages, 2 figure
The formation of ultra-compact dwarf galaxies and nucleated dwarf galaxies
Ultra compact dwarf galaxies (UCDs) have similar properties as massive
globular clusters or the nuclei of nucleated galaxies. Recent observations
suggesting a high dark matter content and a steep spatial distribution within
groups and clusters provide new clues as to their origins. We perform
high-resolution N-body / smoothed particle hydrodynamics simulations designed
to elucidate two possible formation mechanisms for these systems: the merging
of globular clusters in the centre of a dark matter halo, or the massively
stripped remnant of a nucleated galaxy. Both models produce density profiles as
well as the half light radii that can fit the observational constraints.
However, we show that the first scenario results to UCDs that are underluminous
and contain no dark matter. This is because the sinking process ejects most of
the dark matter particles from the halo centre. Stripped nuclei give a more
promising explanation, especially if the nuclei form via the sinking of gas,
funneled down inner galactic bars, since this process enhances the central dark
matter content. Even when the entire disk is tidally stripped away, the nucleus
stays intact and can remain dark matter dominated even after severe stripping.
Total galaxy disruption beyond the nuclei only occurs on certain orbits and
depends on the amount of dissipation during nuclei formation. By comparing the
total disruption of CDM subhaloes in a cluster potential we demonstrate that
this model also leads to the observed spatial distribution of UCDs which can be
tested in more detail with larger data sets.Comment: 8 pages, 8 figures, final version accepted for publication in MNRA
Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations
What singles out quantum mechanics as the fundamental theory of Nature? Here
we study local measurements in generalised probabilistic theories (GPTs) and
investigate how observational limitations affect the production of
correlations. We find that if only a subset of typical local measurements can
be made then all the bipartite correlations produced in a GPT can be simulated
to a high degree of accuracy by quantum mechanics. Our result makes use of a
generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can
go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul
Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator
For two Coulombically interacting electrons in a quantum dot with harmonic
confinement and a constant magnetic field, we show that time-dependent
semiclassical calculations using the Herman-Kluk initial value representation
of the propagator lead to eigenvalues of the same accuracy as WKB calculations
with Langer correction. The latter are restricted to integrable systems,
however, whereas the time-dependent initial value approach allows for
applications to high-dimensional, possibly chaotic dynamics and is extendable
to arbitrary shapes of the potential.Comment: 11 pages, 1 figur
Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae
The structure of a sunspot is determined by the local interaction between magnetic fields and convection near the Sun's surface. The dark central umbra is surrounded by a filamentary penumbra, whose complicated fine structure has only recently been revealed by high-resolution observations. The penumbral magnetic field has an intricate and unexpected interlocking-comb structure and some field lines, with associated outflows of gas, dive back down below the solar surface at the outer edge of the spot. These field lines might be expected to float quickly back to the surface because of magnetic buoyancy, but they remain submerged. Here we show that the field lines are kept submerged outside the spot by turbulent, compressible convection, which is dominated by strong, coherent, descending plumes. Moreover, this downward pumping of magnetic flux explains the origin of the interlocking-comb structure of the penumbral magnetic field, and the behaviour of other magnetic features near the sunspot
Conductance Increase by Electron-Phonon Interaction in Quantum Wires
We investigate the influence of electron-phonon interactions on the
DC-conductance of a quantum wire in the limit of one occupied
subband. At zero temperature, a Tomonaga-Luttinger-like renormalization of
to a value slightly larger than is calculated for a
realistic quantum wire model.Comment: 12 pages RevTeX, no figure. Appears in Phys. Rev.
The XXZ model with anti-periodic twisted boundary conditions
We derive functional equations for the eigenvalues of the XXZ model subject
to anti-diagonal twisted boundary conditions by means of fusion of transfer
matrices and by Sklyanin's method of separation of variables. Our findings
coincide with those obtained using Baxter's method and are compared to the
recent solution of Galleas. As an application we study the finite size scaling
of the ground state energy of the model in the critical regime.Comment: 22 pages and 3 figure
Invariant densities for dynamical systems with random switching
We consider a non-autonomous ordinary differential equation on a smooth
manifold, with right-hand side that randomly switches between the elements of a
finite family of smooth vector fields. For the resulting random dynamical
system, we show that H\"ormander type hypoellipticity conditions are sufficient
for uniqueness and absolute continuity of an invariant measure.Comment: 16 pages; we replaced our original article to point out and close a
gap in the discussion of the Lorenz system in Section 7 (see Remark 2); this
gap is only present in the journal version of this article --- it wasn't
present in the previous arxiv versio
The Radial Distribution of Magnetic Helicity in the Solar Convective Zone: Observations and Dynamo Theory
We continue our attempt to connect observational data on current helicity in
solar active regions with solar dynamo models. In addition to our previous
results about temporal and latitudinal distributions of current helicity
(Kleeorin et al. 2003), we argue that some information concerning the radial
profile of the current helicity averaged over time and latitude can be
extracted from the available observations. The main feature of this
distribution can be presented as follows. Both shallow and deep active regions
demonstrate a clear dominance of one sign of current helicity in a given
hemisphere during the whole cycle. Broadly speaking, current helicity has
opposite polarities in the Northern and Southern hemispheres, although there
are some active regions that violate this polarity rule. The relative number of
active regions violating the polarity rule is significantly higher for deeper
active regions. A separation of active regions into `shallow', `middle' and
`deep' is made by comparing their rotation rate and the helioseismic rotation
law. We use a version of Parker's dynamo model in two spatial dimensions, that
employs a nonlinearity based on magnetic helicity conservation arguments. The
predictions of this model about the radial distribution of solar current
helicity appear to be in remarkable agreement with the available observational
data; in particular the relative volume occupied by the current helicity of
"wrong" sign grows significantly with the depth.Comment: 12 pages, 8 Postscript figures, uses mn2e.cl
- …