1,138 research outputs found

    Constrained Simulations of the Magnetic Field in the Local Supercluster and the Propagation of UHECR

    Full text link
    Magnetic fields (MF) in the Local Supercluster (LSC) of galaxies may have profound consequences for the propagation of Ultra High Energy Cosmic Rays (UHECR). Faraday rotations measurements provide some informations about MF in compact clusters. However, very few is known about less dense regions and about the global structure of MF in the LSC. In order to get a better knowledge of these fields we are performing constrained magnetohydrodynamical simulations of the LSC magnetic field. We will present the results of our simulation and discuss their implications for the angular distribution of expected UHECR deflections.Comment: 4 pages + 1 figure. Published on the Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan (2003

    No evidence for gamma-ray halos around active galactic nuclei resulting from intergalactic magnetic fields

    Full text link
    We analyze the gamma-ray halo around stacked AGNs reported in Ap.J.Lett., 2010, 722, L39. First, we show that the angular distribution of gamma-rays around the stacked AGNs is consistent with the angular distribution of the gamma-rays around the Crab pulsar, which is a point source for Fermi/LAT. This makes it unlikely that the halo is caused by an electromagnetic cascade of TeV photons in the intergalactic space. We then compare the angular distribution of gamma-rays around the stacked AGNs with the point-spread function (PSF) of Fermi/LAT and confirm the existence of an excess above the PSF. However, we demonstrate that the magnitude and the angular size of this effect is different for photons converted in the front and back parts of the Fermi/LAT instrument, and thus is an instrumental effect.Comment: accepted to A&

    Estimate of the correlation signal between cosmic rays and BL Lacs in future data

    Full text link
    The existing correlation between BL Lacertae objects (BL Lacs) and cosmic-ray events observed by HiRes experiment provide sufficient information to formulate quantitatively the hypothesis about the flux of neutral cosmic-ray particles originated from BL Lacs. We determine the potential of future cosmic ray experiments to test this hypothesis by predicting the number of coincidences between arrival directions of cosmic rays and positions of BL Lacs on the celestial sphere, which should be observed in the future datasets. We find that the early Pierre Auger data will not have enough events to address this question. On the contrary, the final Pierre Auger data and the early Telescope Array data will be sufficient to fully test this hypothesis. If confirmed, it would imply the existence of highest-energy neutral particles coming from cosmological distances.Comment: 5 page

    Photons as Ultra High Energy Cosmic Rays ?

    Get PDF
    We study spectra of the Ultra High Energy Cosmic Rays assuming primaries are protons and photons, and that their sources are extragalactic. We assume power low for the injection spectra and take into account the influence of cosmic microwave, infrared, optical and radio backgrounds as well as extragalactic magnetic fields on propagation of primaries. Our additional free parameters are the maximum energy of injected particles and the distance to the nearest source. We find a parameter range where the Greisen-Zatsepin-Kuzmin cut-off is avoided.Comment: 4 pages, 4 figure

    Quantum Dew

    Get PDF
    We consider phase separation in nonequilibrium Bose gas with an attractive interaction between the particles. Using numerical integrations on a lattice, we show that the system evolves into a state that contains drops of Bose-Einstein condensate suspended in uncondensed gas. When the initial gas is sufficiently rarefied, the rate of formation of this quantum dew scales with the initial density as expected for a process governed by two-particle collisions.Comment: 4 pages, revtex, 5 figure
    • …
    corecore