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components of the electro-magnetic background are im-
portant. We take a minimal model for the radio back-
ground [14]. For calculating the infra-red/optical back-
ground we used the same approach as in [15]. For the
extragalactic magnetic �eld only the upper bound is es-
tablished observationally,B < 10�9G(lc=Mpc)1=2 [16]. It
is believed that galactic magnetic �elds can be generated
from the extragalactic \seed" if the later has magnitude
in the range B = 10�12 � 10�9G, but in some regions
it can be much smaller (voids) or larger (sheets). In our
simulations we vary magnetic �eld strength in the range
B = 10�12�10�9G, assuming an unstructured �eld along
the propagation path.
Results. Astrophysical sources imply acceleration

mechanism of the UHECR production, therefore protons
always exist as primaries. We study their propagation
�rst. We assume power law injection spectra, J / E��.
To start with, we study the dependence of the observed
spectra on the value of � assuming homogeneous distri-
bution of sources, no evolution in comoving volume, and
we place no restrictions on the distance to the nearest
source. Resulting spectra are shown in Fig 1.
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FIG. 1. Proton spectra for various values of the power law
index �.

The GZK cut-o� is clearly seen in all cases, but its
impact is di�erent depending on �. \Hard" injection
spectra, � �< 1:5, can be nearly reconciled with the data
provided some other component of cosmic rays (Galactic)
exists at E �< 1019 eV. Note that injection spectra aris-
ing in the Z-burst model can be roughly approximated
by � �< 1 while those arising in the decaying topological
defects model can be approximated by � � 1:5. Astro-
physical acceleration mechanisms often result in � �> 2
[17], however, harder spectra, � �< 1:5 are also possible,
see e.g. [18].
Di�erent models of UHECR generation can be discrim-

inated if sources are identi�ed and distances to them are
known. Unfortunately, identity of particular sources is
lost in the overall spectrum of Fig. 1 and one has to

construct the observed spectra of individual sources as a
function of the distance. This procedure was carried out
in Ref. [19], however, the wealth of information arising
with this treatment may be prohibitive for presentation
in a Letter. We represent it in the following way. First we
construct individual spectra as a function of z. For each
given spectra we �nd the value of energy at which the
number of particles per decade of energy becomes smaller
than the freely propagated particle 
ux by a given factor.
(3, 10, etc.) We plot energy thus obtained as a function
of z. Results are presented in Fig. 2. We see that curves
with an increasing dumping factor converge rapidly in
the range 0:01 �< z �< 0:5, therefore, if the redshift to
the source is in this range, Fig. 2 allows to determine
maximal proton energies expected from this source.
The horizontal line at E = EGZK � 4 � 1019 eV cor-

responds to the formal beginning of the GZK cut-o�.
Attenuation length at this energy is la � 103 Mpc. This
may give a false impression that protons with E = EGZK

reach us from the sources located at l = la. Contribution
of these protons is negligible as can be seen from Fig. 2:
for z > 0:2 bulk of the protons have E < 4� 1019 eV.
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FIG. 2. Levels of a constant dumping of the proton 
ux as
a function of distance traversed.

We conclude that the contribution of protons to the
UHE spectrum from distant sources with z > 0:5 is neg-
ligible above AGASA ankle E > 1019 eV, and it is negli-
gible for sources with z > 0:2 in the highest energy region
E > 4� 1019 eV.
Let us discuss now the propagation and expected spec-

tra of photons. Again we consider � as a free parame-
ter. Results are very sensitive to its value. Interacting
with electro-magnetic backgrounds, photons cascade to
low energies which may lead to overproduction of \soft"
gamma-rays. Main constraint is given by the EGRET ob-
servations in the energy range 108 eV - 1010 eV [20]. We
�nd that injection power law spectra with indexes � � 2
cannot lead to a sizable contribution to the UHECR and
obey the EGRET bound simultaneously. This is valid
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even for vanishing EGMF. Therefore, in what follows we
consider spectra with � �< 2. With this restriction the
value of EGMF becomes a crucial parameter.
We have studied the dependence of the resulting pho-

ton spectra on EGMF and on the maximum energy of
injected photons for di�erent values of �. Our �rst re-
quirement was that the spectra describe highest energy
cosmic ray data well. Our second requirement was that
the con
ict with EGRET bound does not appear. For
each value of � and Emax this gives maximum possible
value of EGMF strength, B, at which con
ict does not
appear. This maximum value of B does not depend sig-
ni�cantly on the spectral shape in the range of � we have
considered, 1 < � < 1:75, and is plotted in Fig. 3. Pa-
rameter space below line with a given value of � is allowed
for this � and leads to resolution of the GZK puzzle with
photons being primaries.
Note that the dimensionality of the parameter space

is actually very large. In this letter we present only sig-
ni�cant dependencies, while dependence e.g. on cosmo-
logical parameters (we assumed H0 = 70 km=s=Mpc and

� = 0:7) and on the evolution of sources (we assumed
no evolution having in mind possible correlations with
BL Lacertae) are weak. These less essential dependen-
sies will be discussed elswere, [21].
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FIG. 3. Maximum allowed value of EGMF strength B as a
function of maximal injection energy.

In constructing photon spectra which lead to Fig. 3,
we made no restrictions on the distance to the nearest
source. With such restrictions, i.e. if there are no close
sources, parameter space is more narrow. In particular,
if there are no sources of UHECR in the GZK volume as
in the case of BL Lacertae, one could think that UHE
photons cannot reach us without signi�cant energy loss.
Indeed, attenuation length of photons is less then 10 Mpc
for energies 1019eV < E < 3�1020 eV, therefore one can
think that there should be no UHE photon events with
such energies. However, this is not true if the photon
injection spectrum extends to large energies, E � 1021

eV. For photons of this energy the attenuation length is

as large as several hundred Mpc. This means that UHE
photons originating with highest energies at these dis-
tances will still be cascading at energies above the GZK
cut-o� while approaching us. As a result they will be
continuously recreating secondary photons with energies
1019eV < E < 3� 1020 eV as well. Interestingly, we �nd
that these secondary photons in this energy range have
a power law spectrum 1=E2 regardless of the value of �
of the initial injection spectrum.
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FIG. 4. Solid line shows combined contribution of proton
and photon components of UHECR. AGASA data are also
shown.

An example of a resulting UHECR spectrum with crus-
sial assumtion of absence of sources withing GZK vol-
ume is presented in Fig. 4. Here we have assumed that
the closest source in the distribution obeys the condition
z > 0:03 and EGMF is small, B = 10�12G. We also
assume injection spectrum � = 1:5 for both protons and
photons. Resulting proton and photon contributions are
shown separately by thin solid and short-dashed lines re-
spectively. We describe the low end of the spectra by
independent Galactic contribution which is modeled by
the power law 1=E3:16 at small energies with an expo-
nential drop at energies around the ankle, E � 1019 eV.
The solid line in Fig. 4 shows the sum of all components.
Photons starts to dominate total UHECR spectrum with
e�ective power law 1=E2 at energies E � 5�6�1019 eV.
Interestingly, this is the value of energy where the clus-
tering (small angle autocorrelations) in AGASA data set
[22] becomes most signi�cant [23].

TABLE I. Parameter choices leading to the �t as good as
in Fig. 4.

zmin � Emax(eV) N
=Np

0.03 1.5 1023 3
0.03 1.5 1022 17
0.03 1.75 1023 12
0.03 1.75 1022 45
0.1 1.5 1023 60
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The ratio of photons to protons at injection (at given
energy) which leads to the best �t; in the case of Fig.
4 is N
=Np = 3. Restrictions on this parameter and
on the maximal energy of injected photons are presented
in Table I for di�erent values of �. Smaller values of
Emax < 1022eV do not work (unrealistically large number
of photons per proton is required) because of the rapid
decrease of the attenuation length for photons. Minimum
distance to the closest source at z = 0:1 still works with
the same value of EGMF. However, this nice picture is
destroyed if the EGMF is larger than a few �10�12 G.
Conclusions We have studied spectra of the UHECR

assuming primaries are protons and photons and injec-
tion spectrum is a power law / E��. With a homoge-
neous distribution of sources and a hard injection spec-
tra, � < 1:5, we �nd that protons can account for the
observed 
ux at highest energies producing only a shal-
low dip around the GZK energy. Magnitude of the ef-
fect is not in strong disagreement with the data at the
level of current statistics. Presence of (invisible) sources
within GZK sphere is required, however, if protons are
the only primaries. Individual sources located at z > 0:2
make negligible contribution into proton component at
E > 4� 1019 eV. Inclusion of photons makes agreement
with the data better. In this case even distant sources
with z > 0:03, such as BL Lacertae, can contribute to
observed rays in the energy range E > 1019 eV with the
e�ective power law spectrum 1=E2, if injection spectrum
extends up to Emax > 1022 eV and EGMF does not ex-
ceeds 10�12 G . Photon component becomes dominant
at E > 5 � 1019eV . In the case when there are sources
at z �< 0:1, the suggested scenario is more economical
than the Z-burst model which requires acceleration of
primaries to even higher energies Emax > 1023 eV. In ad-
dition, the Z-burst model requires extremely large 
uxes
of neutrino, while it is enough to have photon 
ux at the
source to be larger than the proton 
ux by a factor of
only a few.
We conclude that the GZK cut-o� can be avoided with

photons as primaries making perfect �t to the data. Pa-
rameter space is rather large if there are no restriction
to the distance to the nearest source, see Fig. 3. We
cannot rule out photons as primaries even in the case
when production sites are BL Lacertae [12], which (with
known redshifts) are all outside the GZK volume. To
rule it out one needs a source-by-source study taking into
account the concrete con�guration of extragalactic mag-
netic �elds.
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