511 research outputs found

    On the Equivalence of Dual Theories

    Full text link
    We discuss the equivalence of two dual scalar field theories in 2 dimensions. The models are derived though the elimination of different fields in the same Freedman--Townsend model. It is shown that tree SS-matrices of these models do not coincide. The 2-loop counterterms are calculated. It turns out that while one of these models is single-charged, the other theory is multi-charged. Thus the dual models considered are non-equivalent on classical and quantum levels. It indicates the possibility of the anomaly leading to non-equivalence of dual models.Comment: 14 pages, LaTeX; 2 figures, encapsulated PostScrip

    О ΠΠ•ΠšΠžΠ’ΠžΠ Π«Π₯ ΠžΠ‘ΠžΠ‘Π©Π•ΠΠ˜Π―Π₯ Π‘Π˜Π›Π¬ΠΠž Π‘Π˜ΠœΠœΠ•Π’Π Π˜Π§ΠΠ«Π₯ ΠœΠΠžΠ“ΠžΠ“Π ΠΠΠΠ˜ΠšΠžΠ’

    Get PDF
    The paper deals with the symmetry properties of the associated closed convex polyhedra in three-dimensional Euclidean space. Themes work relates in part to the problem of generalization class of regular (Platonic) polyhedra. Historically, the first such generalizations are equiangularly-semiregular (Archimedean) polyhedra. The direction of generalization of regular polyhedra, considered by the author in this paper due to the symmetry axes of the convex polyhedron. A convex polyhedron is called symmetric if it has at least one non-trivial symmetry axis. All the axis of symmetry of the polyhedron intersect at one point called the center of the polyhedron. All considered the polyhedra are polyhedra with the center. Previously we listed all polyhedra, strongly symmetrical with respect to rotation of faces, as well as their dual-metrically polyhedra strongly symmetric with respect to the rotation polyhedral angles [9]–[15]. It is interesting to note that among the highly symmetric polyhedra there are exactly eight of which are not even equivalent to combinatorial Archimedean or equiangularly semiregular polyhedra. By definition, the property of strong symmetry polyhedron requires a global symmetry of the polyhedron with respect to each axis of symmetry perpendicular to the faces of the polyhedron. It is therefore of interest to find weaker conditions on the symmetry elements of the polyhedron. We give a new proof of the local criterion of strong symmetry of the polyhedron, which is based on the properties of the axes of two consecutive rotations. We also consider two classes of polyhedra that generalize the concept of a strongly rotationally symmetrical faces of: a class of polyhedra with isolated asymmetrical faces and the class of polyhedra with isolated asymmetrical zone.Β It is proved that every polyhedron with isolated asymmetrical faces can be obtained by cutting off the vertices or edges of a polyhedron, highly symmetrical with respect to rotation faces; and each polyhedron with isolated asymmetrical zone by build axially symmetric truncated pyramids on some facets of one of the highly symmetric with respect to rotation of the faces of the polyhedron.In each of these classes there are the largest number of polyhedron faces excluding two infinite series: truncated prisms; truncated on two apex and elongated bipyramid.Β Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ связанныС с симмСтриСй свойства Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… Π²Ρ‹ΠΏΡƒΠΊΒ­ Π»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΌ пространствС. Π’Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ частично относится ΠΊ Π·Π°Π΄Π°Ρ‡Π΅ обобщСния класса ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… (ΠΏΠ»Π°Β­ Ρ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ…) ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ². Π˜ΡΡ‚ΠΎΡ€ΠΈΡ‡Π΅ΡΠΊΠΈ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π±Ρ‹Π»ΠΈ Ρ€Π°Π²Π½ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎ-ΠΏΠΎΠ»ΡƒΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ (Π°Ρ€Ρ…ΠΈΠΌΠ΅Π΄ΠΎΠ²Ρ‹) ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ. НаправлС­ Π½ΠΈΠ΅ обобщСния ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ², рассматриваСмоС Π°Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ связано с осями симмСтрии Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся симмСтричным, Ссли ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ…ΠΎΒ­ тя Π±Ρ‹ ΠΎΠ΄Π½Ρƒ Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ось симмСтрии. ВсС оси симмСтрии ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, которая называСтся Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Β­ Π½ΠΈΠΊΠ°. ВсС рассматриваСмыС Π² Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Β­ Π½ΠΈΠΊΠ°ΠΌΠΈ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ. Π Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΈ пСрСчислСны всС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ, сильно симмСтричныС ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ мСтричСски двойствСнныС ΠΈΠΌΒ­ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ, сильно симмСтричныС ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Β­ Π½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ² [9] – [15]. Π˜Π½Ρ‚Π΅Ρ€Π΅ΡΠ½ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ срСди сильно симмСтрич­ Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² Π΅ΡΡ‚ΡŒ Ρ€ΠΎΠ²Π½ΠΎ восСмь Ρ‚Π°ΠΊΠΈΡ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄Π°ΠΆΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½ΠΎ эквивалСнтными Π°Ρ€Ρ…ΠΈΠΌΠ΅Π΄ΠΎΠ²Ρ‹ΠΌ, ΠΈΠ»ΠΈ Ρ€Π°Π²Π½ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎ ΠΏΠΎΠ»ΡƒΠΏΡ€Π°Β­ Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌ. По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, свойство сильной симмСтричности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ глобальной симмСтричности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ оси симмСтрии, пСрпСндикулярной Π³Ρ€Π°Π½ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄Β­ ставляСт интСрСс Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ слабых условий симмСтрии Π½Π° элСмСн­ Ρ‚Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π”Π°Π½ΠΎ Π½ΠΎΠ²ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ локального критСрия сильной симмСтрич­ ности ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ основано Π½Π° свойствах осСй Π΄Π²ΡƒΡ… послСдо­ Π²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠΉ. РассмотрСны Ρ‚Π°ΠΊΠΆΠ΅ Π΄Π²Π° класса ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ², ΠΎΠ±ΠΎΠ±Ρ‰Π°ΡŽΡ‰ΠΈΡ… поня­ Ρ‚ΠΈΠ΅ сильно симмСтричного ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°: класс ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ нСсиммСтричными гранями ΠΈ класс ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ нСсиммСтричными поясами. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ нСсиммСтрич­ Π½Ρ‹ΠΌΠΈ гранями ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΏΡƒΡ‚Ρ‘ΠΌ отсСчСния Π²Π΅Ρ€ΡˆΠΈΠ½ ΠΈΠ»ΠΈ Ρ€Ρ‘Π±Π΅Ρ€Β Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, сильно симмСтричного ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ€Π°Ρ‰Π΅Β­ ния Π³Ρ€Π°Π½Π΅ΠΉ; Π° ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ с ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ нСсиммСтричными поясами-ΠΏΡƒΡ‚Ρ‘ΠΌ надстраивания осСсиммСтричных усСчённых ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… гранях ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· сильно симмСтричных ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ€Π°Ρ‰Π΅Β­ ния Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ΠŸΡ€ΠΈ этом Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· этих классов сущСствуСт ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ с наибольшим числом Π³Ρ€Π°Π½Π΅ΠΉ, Π½Π΅ считая Π΄Π²ΡƒΡ… бСсконСчных сСрий: усСчённых ΠΏΡ€ΠΈΠ·ΠΌ; усСчённых ΠΏΠΎ Π΄Π²ΡƒΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌ ΠΈ ΡƒΠ΄Π»ΠΈΠ½Ρ‘Π½Π½Ρ‹Ρ… Π±ΠΈΒ­ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄.

    ΠžΠ‘ ΠžΠ”ΠΠžΠœ ΠšΠ›ΠΠ‘Π‘Π• Π‘Π˜Π›Π¬ΠΠž Π‘Π˜ΠœΠœΠ•Π’Π Π˜Π§ΠΠ«Π₯ ΠœΠΠžΠ“ΠžΠ“Π ΠΠΠΠ˜ΠšΠžΠ’

    Get PDF
    We prove the completeness of the list of closed convex polyhedra in E3, that are stronglyΒ symmetric with respect to the rotation of the faces .Β Polyhedron is called symmetric if it has at least one non-trivial rotation axis. All axesΒ intersect at a single point called the center of the polyhedron. All considered polyhedra areΒ polyhedra with the center.Β A convex polyhedron is called a strongly symmetrical with respect to the rotation of theΒ faces, if each of its faces Fhas an rotation axis L, intersects the relative interior of F, and LisΒ the rotation axis of the polyhedron.Β It is obvious that the order of rotation axis of Ldoes not necessarily coincide with the orderΒ of this axis, if the face of Fregarded as a figure separated from the polyhedron.Β It has previously been shown, that the requirement of global symmetry of the polyhedronΒ faces the rotation axis can be replaced by the weaker condition of symmetry of the star of eachΒ face of the polyhedron: to polyhedron was symmetrical with respect to the rotation of the faces,Β it is necessary and sufficient that some nontrivial rotation axis of each face, regarded as a figureΒ separated from the polyhedron, is the rotation axis of the star of face.Β Under the star of face Fis understood face itself and all faces have at least one commonΒ vertex with F.Β Given this condition, the definition of the polyhedron strongly symmetric with respect toΒ the rotation of the faces is equivalent to the following: the polyhedron is called a stronglyΒ symmetrical with respect to the rotation of the faces , if some non-trivial rotation axis of eachΒ face, regarded as a figure separated from the polyhedron, is the rotation axis of the star of face.Β In the proof of the main theorem on the completeness of the list of this class of polyhedraΒ using the result of the complete listing of the so- called polyhedra of 1st and 2nd class [1].Β In this paper we show that in addition to the polyhedra of the 1st and 2nd class, listed in [1],Β only 8 types of polyhedra belongs to the class of polyhedra stronghly symmetric with respectΒ to the rotation of faces. Seven of this eighteen types are not combinatorially equivalent regularΒ or semi-regular (Archimedean). One type of eight is combinatorially equivalent ArchimedeanΒ polyhedra, but does not belong to polyhedra of 1st or 2nd class.Β Turning to the polyhedra, dual strongly symmetrical about the rotation of faces, that is,Β to the polyhedra, stronghly symmetric about the rotation of polyhedral angles, we get theirΒ complete listing. It follows that there are 7 types of polyhedra, highly symmetric with respectΒ to the rotation of polyhedral angles which are not combinatorially equivalent to Gessel bodies.Β Class of polyhedra stronghly symmetric with respect to the rotation of faces, as well asΒ polyhedra 1st and 2nd class mentioned above can be viewed as a generalization of the class ofΒ regular (Platonic) polyhedra. Other generalizations of regular polyhedra can be found in [3],[4],[12]-[15].Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ Π΄ΠΎΠΊΠ°Π·Π°Π½Π° ΠΏΠΎΠ»Π½ΠΎΡ‚Π° списка Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² Π² E3, ΡΠΈΠ»ΡŒΠ½ΠΎΒ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ.Β ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся симмСтричным, Ссли ΠΎΠ½ ΠΈΠΌΠ΅Π΅Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄Π½Ρƒ Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽΒ ΠΎΡΡŒ вращСния. ВсС оси ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ Π² ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅, которая называСтся Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ВсС рассматриваСмыС Π² Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ симмСтричными ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌΠΈ.Β Π’Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся сильно симмСтричным ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния гранСй, Ссли Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π΅Π³ΠΎ Π³Ρ€Π°Π½ΠΈ FимССтся ось вращСния L, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰Π°Ρ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽΒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΎΡΡ‚ΡŒ F, ΠΈ LявляСтся осью вращСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.Β ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ порядок оси вращСния LΠ½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ совпадаСт с порядком этой оси, Ссли Π³Ρ€Π°Π½ΡŒ FΡ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ„ΠΈΠ³ΡƒΡ€Ρƒ, ΠΎΡ‚Π΄Π΅Π»Ρ‘Π½Π½ΡƒΡŽ ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.Β Π Π°Π½Π΅Π΅ Π°Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ глобальной симмСтрии ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°Β ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ осСй вращСния Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ слабым условиСм симмСтрии звСзды ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°: для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ Π±Ρ‹Π» сильно симмСтричным ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Π°ΡΒ Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Π°Ρ ось вращСния ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ, рассматриваСмой ΠΊΠ°ΠΊ Ρ„ΠΈΠ³ΡƒΡ€Π°, отдСлённая ΠΎΡ‚Β ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, являлась осью вращСния Π·Π²Π΅Π·Π΄Ρ‹ этой Π³Ρ€Π°Π½ΠΈ. Под Π·Π²Π΅Π·Π΄ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ FпонимаСтся сама Π³Ρ€Π°Π½ΡŒ ΠΈ всС Π³Ρ€Π°Π½ΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ хотя Π±Ρ‹ ΠΎΠ΄Π½Ρƒ ΠΎΠ±Ρ‰ΡƒΡŽΒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ с F. Учитывая это условиС, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° сильно симмСтричного ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ эквивалСнтно ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌΡƒ: ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ называСтся сильно симмСтричным ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ, Ссли нСкоторая Π½Π΅Ρ‚Ρ€ΠΈΠ²ΠΈΠ°Π»ΡŒΠ½Π°Ρ ось вращСния каТдой Π³Ρ€Π°Π½ΠΈ, рассматриваСмой ΠΊΠ°ΠΊ Ρ„ΠΈΠ³ΡƒΡ€Π°, отдСлённая ΠΎΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, являСтся ΠΎΡΡŒΡŽΒ Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΡ Π·Π²Π΅Π·Π΄Ρ‹ этой Π³Ρ€Π°Π½ΠΈ.Β ΠŸΡ€ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ основной Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠΎ ΠΏΠΎΠ»Π½ΠΎΡ‚Π΅ списка ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² рассматриваСмого класса ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΌ пСрСчислСнии Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… ΡΠΈΠ»ΡŒΠ½ΠΎΒ ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² 1-Π³ΠΎ ΠΈ 2-Π³ΠΎ класса ΠΈΠ· [1].Β Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ доказываСтся, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠΌΠΈΠΌΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² 1-Π³ΠΎ ΠΈ 2-Π³ΠΎ класса ΠΊΒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌ, сильно симмСтричным ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ Π΅Ρ‰Ρ‘Β Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 8 Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ². Из этих восьми Ρ‚ΠΈΠΏΠΎΠ² 7 Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄Π°ΠΆΠ΅ комбинаторно эквивалСнтными Ρ€Π°Π²Π½ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎ-ΠΏΠΎΠ»ΡƒΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ (Π°Ρ€Ρ…ΠΈΠΌΠ΅Π΄ΠΎΠ²Ρ‹ΠΌ). Один Ρ‚ΠΈΠΏ ΠΈΠ· восьми являСтся ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½ΠΎ эквивалСнтным Ρ€Π°Π²Π½ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎ-ΠΏΠΎΠ»ΡƒΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΌΡƒ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΡƒ, Π½ΠΎΒ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌ 1-Π³ΠΎ ΠΈΠ»ΠΈ 2-Π³ΠΎ класса.Β ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Ρ ΠΊ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌ, двойствСнным сильно симмСтричным ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ, Ρ‚.Π΅. ΠΊ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°ΠΌ, сильно симмСтричным ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΠΈ ΠΈΡ… ΠΏΠΎΠ»Π½ΠΎΠ΅ пСрСчислСниС. ΠžΡ‚ΡΡŽΠ΄Π° слСдуСт, Ρ‡Ρ‚ΠΎ сущСствуСт 7Β Ρ‚ΠΈΠΏΠΎΠ² ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ², сильно симмСтричных ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ‚ΠΎΡ€Π½ΠΎ эквивалСнтными Ρ‚Π΅Π»Π°ΠΌ ГСссСля. Класс ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ², сильно симмСтричных ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ вращСния Π³Ρ€Π°Π½Π΅ΠΉ Π² работС обозначаСтся SF. Класс SF, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈ упомянутыС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈ 1-Π³ΠΎ ΠΈ 2-Π³ΠΎ класса моТно Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ класса ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… (ΠΏΠ»Π°Ρ‚ΠΎΠ½ΠΎΠ²Ρ‹Ρ…) ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ².Β Π”Ρ€ΡƒΠ³ΠΈΠ΅ обобщСния ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π² Ρ€Π°Π±ΠΎΡ‚Π°Ρ… [3],[4], [12]-[15]

    Structural and transport properties of GaAs/delta<Mn>/GaAs/InxGa1-xAs/GaAs quantum wells

    Full text link
    We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both "metallic" and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its "intrinsic" mechanism in ferromagnetic systems.Comment: 15 pages, 9 figure

    A New Algorithm for Analysis of Experimental MΓΆssbauer Spectra

    Get PDF
    A new approach to analyze the nuclear gamma resonance (NGR) spectra is presented and justified in the paper. The algorithm successively spots the Lorentz lines in the experimental spectrum by a certain optimization procedures. In MΓΆssbauer spectroscopy, the primary analysis is based on the representation of the transmission integral of an experimental spectrum by the sum of Lorentzians. In the general case, a number of lines and values of parameters in Lorentzians are unknown. The problem is to find them. In practice, before the experimental data processing, one elaborates a model of the MΓΆssbauer spectrum. Such a model is usually based on some additional information. Taking into account physical restrictions, one forms the shape of the lines which are close to the normalized experimental MΓΆssbauer spectrum. This is done by choosing the remaining free parameters of the model. However, this approach does not guarantee a proper model. A reasonable way to construct a structural NGR spectrum decomposition should be based on its model-free analysis. Some model-free methods of the NGR spectra analysis have been implemented in a number of known algorithms. Each of these methods is useful but has a limited range of application. In fact, the previously known algorithms did not react to hardly noticeable primary features of the experimental spectrum, but identify the dominant components only. In the proposed approach, the difference between the experimental spectrum and the known already determined part of the spectral structure defines the next Lorentzian. This method is effective for isolation of fine details of the spectrum, although it requires a well-elaborated algorithmic procedure presented in this paper

    A NEW ALGORITHM FOR ANALYSIS OF EXPERIMENTAL MΓ–SSBAUER SPECTRA

    Get PDF
    A new approach to analyze the nuclear gamma resonance (NGR) spectra is presented and justified in the paper. The algorithm successively spots the Lorentz lines in the experimental spectrum by a certain optimization procedures. In MΓΆssbauer spectroscopy, the primary analysis is based on the representation of the transmission integral of an experimental spectrum by the sum of Lorentzians. In the general case, a number of lines and values of parameters in Lorentzians are unknown. The problem is to find them. In practice, before the experimental data processing, one elaborates a model of the MΓΆssbauer spectrum. Such a model is usually based on some additional information. Taking into account physical restrictions, one forms the shape of the lines which are close to the normalized experimental MΓΆssbauer spectrum. This is done by choosing the remaining free parameters of the model. However, this approach does not guarantee a proper model. A reasonable way to construct a structural NGR spectrum decomposition should be based on its model-free analysis. Some model-free methods of the NGR spectra analysis have been implemented in a number of known algorithms. Each of these methods is useful but has a limited range of application. In fact, the previously known algorithms did not react to hardly noticeable primary features of the experimental spectrum, but identify the dominant components only.Β  In the proposed approach, the difference between the experimental spectrum and the known already determined part of the spectral structure defines the next Lorentzian. This method is effective for isolation of fine details of the spectrum, although it requires a well-elaborated algorithmic procedure presented in this paper

    The experience of the participation of students of USMU in the university and regional stages of the XXVII Moscow student surgery olympiad named after academician M.I. Perelman.

    Get PDF
    The article considers the statistically processed data obtained as a result of questioning students of 3-6 courses of the Ural State Medical University concerning their participation in the university and regional stages of the XXVII Moscow Olympiad of Surgery named after Academician M.I. PerelmanΠ’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСны статистичСски ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ анкСтирования студСнтов 3-6 курсов Π£Π“ΠœΠ£ ΠΏΠΎ вопросу ΠΈΡ… участия Π²ΠΎ внутривузовском ΠΈ Ρ€Π΅Π³ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ этапах XXVII Московской студСнчСской ΠΎΠ»ΠΈΠΌΠΏΠΈΠ°Π΄Ρ‹ ΠΏΠΎ Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ ΠΈΠΌ. Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠ° М.И. ΠŸΠ΅Ρ€Π΅Π»ΡŒΠΌΠ°Π½Π°
    • …
    corecore