166 research outputs found

    Structural investigation of twinned crystals

    Get PDF

    Urban geochemical changes and pollution with potentially harmful elements in seven Russian cities

    Get PDF
    This paper presents results of an analysis of potentially harmful elements (PHEs, Pb, Zn and Cu) and conservative element (CE, Fe) concentrations in urban surface deposited sediment (USDS). The study was conducted in seven large Russian cities located in different geographic and climatic zones, and in territories with different geology and anthropogenic pressures: Chelyabinsk, Magnitogorsk, Nizhniy Novgorod, Nizhniy Tagil, Rostov-on-Don, Tyumen, and Ufa. The initial geochemical baseline relationships between PHEs and CE concentrations in the USDS were reconstructed for each city applying an approach based on linear weighted fitting of PHE as a function of CE with lower weights assigned to more polluted samples. The reconstructed average initial baseline Pb, Cu, and Zn concentrations varied between 17–52, 25–196, and 91–413 mg kgβˆ’1, respectively. Several new criteria for assessing the degree of geochemical transformation and pollution of the urban environment, such as the percentage of polluted samples, average pollutant concentration in polluted samples, and weighting degree index Ξ΄, were suggested and compared with common criteria, such as the PHE concentration and the geo-accumulation index. The environmental rank of a city significantly differed depending on whether the criterion for ranking was total PHE pollution or changes in comparison with the initial geochemical baseline. Β© 2020, The Author(s).Russian Science Foundation,Β RSF: 18-77-10024The study was supported by Russian Science Foundation (grant No. 18-77-10024)

    FIRST DETRITAL ZIRCON GEOCHRONOLOGY DATA FOR CLASTIC ROCKS OF THE EAST SAKHALIN ACCRETIONARY TERRANE

    Get PDF
    First detrital zircon geochronology data and results of geochemical studies for clastic rocks of the Rymnik and Nabil zones of the East Sakhalin accretionary terrane, located within the region of the East Sakhalin Mountains, are presented. The studies have been carried out at the Center for Collective Use of Far Eastern Geological Institute of the Far East Branch of the Russian Academy of Sciences in Vladivostok. The established geochemical features suggest that the source of the clastic material of the zones was felsic rocks of the deeply eroded continental island arc or arcs. Although the geochemical characteristics are similar, there are sharp differences between the detrital zircons’ age distribution patterns of rocks of these zones. In the sandstone of the Nabil zone, 75 % of the zircon grains are of the middle Cretaceous age (94–108 Ma) with a peak of 96 Ma, 15 % are the middle Permian-Early Jurassic, and 10 % are the Precambrian (mainly Paleoproterozoic). The sandstone of the Rymnik zone has a more complex (polymodal) pattern of the detrital zircon age distribution, with a significant contribution of the Precambrian grains (37 %). Most of the grains belong to the Early Jurassic (peak 196 Ma) and the Early Cretaceous (peak 137 Ma), with 47 % of the Mesozoic grains. The likely provenances of the clastic material were the Middle Cretaceous volcanic arcs of the Asian eastern margin older complexes of the continent

    MODELING SEDIMENT PRODUCTION IN URBAN ENVIRONMENTS: CASE OF RUSSIAN CITIES

    Get PDF
    The aim of this study is to provide a tool to assess sediment production in an urban area. The urban environment is affected by a variety of anthropogenic and natural factors that, in particular, lead to the sediment production. The storage of sediments in the urban landscape negatively affects the quality of the urban environment. The model was developed on the basis of landscape studies conducted in residential areas of six Russian cities. The model takes into account (1) the influence of precipitation, spring snowmelt, and vehicles, (2) the influence of erosion factors for two seasons: warm (t>5Β°C) and cold (t<5Β°C), and (3) the presence of disturbed surfaces. The application of the developed model to Ekaterinburg city conditions returned sediment production equal to 1.2 kg/m2/y. A comparison of seasonal values shows that sediment production in cold season is 2.5 times higher than in the warm season. In the absence of the disturbed surfaces, sediment production decreases to 0.44 kg/m2/y. Modeling showed a correlation between sediment production in Russian cities and duration of the cold season. The efficiency of various urban area maintenance practices and cleaning measures were evaluated in terms of sediment production and storage. The developed model presented in this paper is based on research in Russian cities, but can be applied to assess the formation of sediment and measures to reduce the value of its accumulation in the urban environment in different regions of the world. Β© 2023, Russian Geographical Society. All rights reserved

    Assessment of Effective Doses Due to Inhalation of Natural Radioactivity in the Dust of Urban Environment

    Full text link
    The inhalation exposure to dust in the urban environment for adult and child is very important due to health issues. The radionuclides Ra-226 and Th-232 were measured in the samples of urban surface deposited sediments. The average concentrations of Ra-226 and Th-232 in dust are 20.8 and 15.3 Bq kg-1, respectively. The effective dose is estimated depending on the daily activity and air dust concentration for the adult and child. The results show that the total effective dose received during 70 years by adult without outdoor activity is 0.74 ΞΌSv under exposure to air dust concentration 1Γ—10-4 g/m3, which is typical for the city of Ekaterinburg. Critical scenario of exposure of an adult person to radioactive material in particulate matter in the air including such daily activities as training, bicycle driving and work in urban environment results in the total effective dose 17.8 ΞΌSv during 70 years at air dust concentration equal to the diurnal Maximum Permissible Limit (1.5Γ—10-4 g/m3). Also, the critical children group can be exposed to radionuclides by inhalation through daily outdoor games, sport activity, training, bicycle etc (8 hours daily during vacation, 4 hours daily during school time, 2000 hours per year from 7 years to 17 years). The total effective dose for critical children group is 2.9 ΞΌSv. Thus, the effective doses due to inhalation of natural radioactivity in the dust in city of Ekaterinburg are relatively low in comparison ICRP reference level. Β© 2020 American Institute of Physics Inc.. All rights reserved

    Adiabatic population transfer via multiple intermediate states

    Get PDF
    This paper discusses a generalization of stimulated Raman adiabatic passage (STIRAP) in which the single intermediate state is replaced by NN intermediate states. Each of these states is connected to the initial state \state{i} with a coupling proportional to the pump pulse and to the final state \state{f} with a coupling proportional to the Stokes pulse, thus forming a parallel multi-Ξ›\Lambda system. It is shown that the dark (trapped) state exists only when the ratio between each pump coupling and the respective Stokes coupling is the same for all intermediate states. We derive the conditions for existence of a more general adiabatic-transfer state which includes transient contributions from the intermediate states but still transfers the population from state \state{i} to state \state{f} in the adiabatic limit. We present various numerical examples for success and failure of multi-Ξ›\Lambda STIRAP which illustrate the analytic predictions. Our results suggest that in the general case of arbitrary couplings, it is most appropriate to tune the pump and Stokes lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure

    Π Π°Π΄ΠΎΠ½, ΠΊΡƒΡ€Π΅Π½ΠΈΠ΅ ΠΈ вирус ΠΏΠ°ΠΏΠΈΠ»Π»ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΊΠ°ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ риска Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π² эпидСмиологичСском исслСдовании экологичСского Ρ‚ΠΈΠΏΠ°

    Get PDF
    The aim of the study: to analyze the risk of lung cancer caused by exposure to indoor radon using an environmental study, taking into account recent data on the possible effect of Human Papillomavirus, based on lung cancer mortality and radon exposure in the Russian regions.Materials and methods: in the analysis, linear dependencies of lung cancer against influencing factors were used. The average radon concentration for the regions of Russia was earlier reconstructed on the basis of the annual reports of the form 4-DOZ. Information on morbidity and mortality from malignant neoplasms in Russia was obtained from annual reports issued by the Π . Hertsen Moscow Oncology Research Institute. As a surrogate of the level of infection with Human Papillomavirus, the incidence of cervix cancer was used. The smoking prevalence was estimated applying data on the incidence of tongue cancer.Results: taking into account smoking and infection with Human Papillomavirus, it is possible to obtain estimates of lung cancer excess relative risk when induced by radon in dwellings consistent with the results of case-control studies.Conclusion: the analysis of regionally aggregated data on deaths from lung cancer in Russia, the average level of indoor radon concentrations and significant risk factors for lung cancer confirms the linear threshold-free concept of radiation-induced carcinogenesis.ЦСль исслСдования: ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ риск развития Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΈΡ…, Π²Ρ‹Π·Π²Π°Π½Π½Ρ‹ΠΉ воздСйствиСм Ρ€Π°Π΄ΠΎΠ½Π° Π² помСщСниях, с использованиСм экологичСского исслСдования, с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π½Π΅Π΄Π°Π²Π½ΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΌ влиянии вируса ΠΏΠ°ΠΏΠΈΠ»Π»ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Π½Π° основС Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ смСртности ΠΎΡ‚ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ€Π°Π΄ΠΎΠ½ΠΎΠΌ Π² Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ… России.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ использовались Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹Π΅ зависимости Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΎΡ‚ Π²Π»ΠΈΡΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π‘Ρ€Π΅Π΄Π½ΠΈΠ΅ ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹Π΅ активности Ρ€Π°Π΄ΠΎΠ½Π° для областСй России Ρ€Π°Π½Π΅Π΅ Π±Ρ‹Π»ΠΈ восстановлСны Π½Π° основС Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚Ρ‡Π΅Ρ‚ΠΎΠ² Ρ„ΠΎΡ€ΠΌΡ‹ β„– 4-Π”ΠžΠ—. Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ ΠΎ заболСваСмости ΠΈ смСртности ΠΎΡ‚ злокачСствСнных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² России ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° ΠΈΠ· Π΅ΠΆΠ΅Π³ΠΎΠ΄Π½Ρ‹Ρ… ΠΎΡ‚Ρ‡Π΅Ρ‚ΠΎΠ², выпускаСмых Московским Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΠΌ институтом ΠΈΠΌ. П.А. Π“Π΅Ρ€Ρ†Π΅Π½Π°. Π’ качСствС суррогата уровня инфицирования вирусом ΠΏΠ°ΠΏΠΈΠ»Π»ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° использовалась Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ Ρ€Π°ΠΊΠΎΠΌ шСйки ΠΌΠ°Ρ‚ΠΊΠΈ. Π Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Π΅Π½Π½ΠΎΡΡ‚ΡŒ курСния Π±Ρ‹Π»Π° ΠΎΡ†Π΅Π½Π΅Π½Π° ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΎ заболСваСмости Ρ€Π°ΠΊΠΎΠΌ языка.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΡƒΡ‡Π΅Ρ‚ курСния ΠΈ инфицирования вирусом ΠΏΠ°ΠΏΠΈΠ»Π»ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ риска Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Π»ΡƒΡ‡Π΅-Π½ΠΈΠΈ Ρ€Π°Π΄ΠΎΠ½ΠΎΠΌ Π² ΠΆΠΈΠ»ΠΈΡ‰Π°Ρ…, ΡΠΎΠ³Π»Π°ΡΡƒΡŽΡ‰ΠΈΠ΅ΡΡ с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ исслСдований ΠΏΠΎ Ρ‚ΠΈΠΏΡƒ случай – ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: Π°Π½Π°Π»ΠΈΠ· Π°Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ смСртности ΠΎΡ‚ Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ Π² России, срСднСго уровня объСмной активности Ρ€Π°Π΄ΠΎΠ½Π° Π² ΠΆΠΈΠ»ΠΈΡ‰Π°Ρ… ΠΈ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² риска Ρ€Π°ΠΊΠ° Π»Π΅Π³ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚ Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ Π±Π΅ΡΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΡƒΡŽ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎ-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π°

    Анализ эффСктивности мСроприятий ΠΏΠΎ сниТСнию Π΄ΠΎΠ· облучСния насСлСния ΠΎΡ‚ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… источников Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ сСла ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ, Ρ€Π΅ΠΊΠ° Π’Π΅Ρ‡Π°

    Get PDF
    The aim of the study was to analyze the effectiveness of measures on reduction of population radiation exposure at the radioactively contaminated territories by comparing radiation doses due to natural and technogenic sources. Materials and methods: the effective doses of radiation exposure due to the Techa River contamination in Muslyumovo were calculated using the data on radionuclide intakes and coefficients recommended by ICRP. Exposure to radon was estimated based on the results of radon surveys of Muslyumovo in 1992 and New Muslyumovo in 2015. Results: the total effective dose due to the Techa River contamination accumulated over the period 1950–2000 was 144 mSv. Annual effective doses due to radon in Muslyumovo and New Muslyumovo were 9,2 and 5,1 mSv respectively. The total effective dose received due to the natural and technogenic radiation was about 0,7 Sv (a contribution of radon is 77%). The total averted dose by the year 2015 due to resettlement in 2007 is 38 mSv. The dose reductionΒ  appeared mostly due to lower radon exposure. Conclusion: the maximum reduction of population exposure could be achieved by means of timely evacuation to uncontaminated territory together with the indoor radon prevention measures.ЦСль исслСдования: провСсти Π°Π½Π°Π»ΠΈΠ· эффСктивности мСроприятий ΠΏΠΎ сниТСнию Π΄ΠΎΠ· облучСния насСлСния, ΠΏΡ€ΠΎΠΆΠΈΠ²Π°ΡŽΡ‰Π΅Π³ΠΎ Π½Π° тСрриториях, ΠΏΠΎΠ΄Π²Π΅Ρ€Π³ΡˆΠΈΡ…ΡΡ Π°Π²Π°Ρ€ΠΈΠΉΠ½ΠΎΠΌΡƒ Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ Π·Π°Π³Ρ€ΡΠ·Π½Π΅Π½ΠΈΡŽ, Π½Π° основС расчСта ΠΈ сравнСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π΅Π½Π½Ρ‹Ρ… Π΄ΠΎΠ· облучСния Π·Π° счСт  Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… источников. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: эффСктивныС Π΄ΠΎΠ·Ρ‹ Π·Π° счСт Ρ€Π°Π΄ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ загрязнСния Ρ€Π΅ΠΊΠΈ Π’Π΅Ρ‡Π° Π² сСлС ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ рассчитаны с использованиСм Π΄Π°Π½Π½Ρ‹Ρ… ΠΎ поступлСнии Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ² Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ ΠΈ коэффициСнтов, Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠœΠšΠ Π—. ΠžΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π΄ΠΎΠ½ΠΎΠΌ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΎΡΡŒ ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ Ρ€Π°Π΄ΠΎΠ½ΠΎΠ²Ρ‹Ρ… обслСдований Π² 1992 Π³. Π² ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ ΠΈ Π² 2015 Π³. Π² Новом ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: суммарная эффСктивная Π΄ΠΎΠ·Π°, обусловлСнная загрязнСниСм Ρ€Π΅ΠΊΠΈ Π’Π΅Ρ‡Π°, накоплСнная Π·Π° 1950–2000 Π³Π³.,Β  составила 144 ΠΌΠ—Π². Π“ΠΎΠ΄ΠΎΠ²Ρ‹Π΅ эффСктивныС Π΄ΠΎΠ·Ρ‹ облучСния ΠΎΡ‚ Ρ€Π°Π΄ΠΎΠ½Π° Π² ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ ΠΈ Новом ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 9,2 ΠΈ 5,1 ΠΌΠ—Π² соотвСтствСнно. ΠžΠ±Ρ‰Π°Ρ эффСктивная Π΄ΠΎΠ·Π°, накоплСнная ΠΊ 2000 Π³. ΠΎΡ‚ Π΄Π²ΡƒΡ… источников, составила 0,7 Π—Π² (Π²ΠΊΠ»Π°Π΄ Ρ€Π°Π΄ΠΎΠ½Π° – 77%). ΠŸΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π΅Π½Π½Π°Ρ ΠΊ 2015 Π³. Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ пСрСсСлСния Π² 2007 Π³. Π΄ΠΎΠ·Π° составляСт 38 ΠΌΠ—Π². Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² основном достигнуто Π·Π° счСт мСньшСй объСмной активности Ρ€Π°Π΄ΠΎΠ½Π° Π² зданиях. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: максимальноС сокращСниС Π΄ΠΎΠ·Ρ‹ облучСния насСлСния с. ΠœΡƒΡΠ»ΡŽΠΌΠΎΠ²ΠΎ ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹Ρ‚ΡŒ осущСствлСно Π² случаС своСврСмСнного пСрСсСлСния Π½Π° Π½Π΅Π·Π°Π³Ρ€ΡΠ·Π½Π΅Π½Π½ΡƒΡŽ Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΡŽ ΠΈ примСнСния ΠΏΡ€Π΅Π²Π΅Π½Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ€Π°Π΄ΠΎΠ½ΠΎΠ·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Ρ… мСроприятий
    • …
    corecore