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INTRODUCTION

The phenomenon of complex crystals of the same substance has been

known to mineralogists for a long time. These complex crystal objects

consisting of two or more components whose mutual orientation is strict-

ly fixed were called twins. The twins may be distinguished from single

crystals by their morphological features. It should be noted that the mor-

phology does not always allow one to distinguish a twin from a single

crystal. New methods of studying twins should be applied. Twin domains

can differ in their optical, mechanical, electric, magnetic and other

physical properties, if anisotropy of the appropriate characteristics is non-

invariant relative to twinning symmetry operation.' To distinguish a twin

from a single crystal by measuring some of its physical properties, one

should compare the measured values of tensor elements of the given

property with the values of appropriate tensor elements of the same

physical property of a single crystal. However, sufficient information on

the properties of the single crystal which is being studied is not always

available. Then, optical methods are preferable. For instance, if the cha-

racteristics of an optical indicatrix are not invariant relative to symmetry

operation of twinning, the twin domains differ from each other in

polarized light. If the dimensions of the twin domains are microscopically

small (such twins are called microtwins), they will be indistinguishable at

the given spatial resolution.

In case of microtwinning, to distinguish twins from single crystals

one can make use of X-ray diffraction methods, because in this case do-

main sizes are not important, it is only the total volume of the domains

that matters. As is known, all crystals have a mosaic structure and consist

of blocks measuring 10-1 - 10-5 cm, that scatter X-rays incoherently.2 It is
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just owing to such crystal structure that kinematic theory of X-ray diffrac-
tion can be applied to X-ray structural analysis. In case of twins with ran-
dom boundaries the scattering of X-rays by various componets will be in-
coherent. Therefore, a diffraction pattern from a twined crystals is a su-
perposition of diffraction patterns from their components. It may seem
that diffraction methods are ideal for investigating twins, because different
twin domains could be readily distinguished on the diffraction pattern,
and, thus, one could distinghish twin from a single crystal. However, very
often a symmetry element of twinning is a symmetry element of the lattice
(it transforms the lattice into itself or in a parallel position) or a sublattice
of a twin domain. In such cases the diffraction pattern of twin does not
differ geometrically from a diffraction pattern of single crystal. There is
difference only in reflection intensities. Diffraction patterns of such twins
are often erroneously interpreted as diffraction patterns of single crystals.
As a result, either the analysis of the atomic structure is impossible or the
author obtains a wrong results of the X-ray structural study: the space
group and atomic model of the crystal are determined incorrectly. The
results reported in some structural papers are doubtful from the point of
view of not taking into account microtwinning. In this connection, we
would like to stress how important is to determine reliably and in time the
microtwinning in the samples studied.

SYMMETRY AND CLASSIFICATION OF TWINS

Since the mutual orientation of twin domains obeys certain laws, it is
convenient to make use of the group theory. Black-and-white Shubnikov
symmetry groups may be used to describe the twins.' While characteriz-
ing a twin using the black-and-white groups, it is natural to relate the
symmetry elements connecting different twin domains with symmetry
elements of the group, that change their colour. Symmetry elements of the
initial single crystal should then he related to usual symmetry elements.
The problems of symmetry of twins were discussed in detail in a mono-
graph by V. A. Mokievskii "Morphology of Crystals".' In that paper the
following determination of a twin is given: "A twin is such a conglomerate
of two similar components whose symmetry group is a supergroup of in-
dex 2 of subgroups of components symmetry class". According to this de-
termination the symmetry of twing G' may be obtained by direct or semi-
direct product of twinning symmetry element g' and symmetry class of
twin component K:

G'g'®K.
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Therefore, the following relationships are true:

G'::) HC K

NG,=2-NH,
(1)

where H is a subgroup of crystal class K, which is invariant with respect

to twin symmetry element g', NG, and NH are orders of groups G' and H,

respectively. It should be noted that in a particular case, when G' is a di-

rect product of g' and K, H is a trivial subgroup of K (H = K). According

to the above determination of twins the authors of paper4 obtained all 58

symmetry groups for the crystallographic twins.

Proceeding from twin symmetry V. A. Mokievskii suggests to split

twins into two groups: 1) rigid twins (twins where symmetry element is

rigidly related with the crystal) and 2) non-rigid twins (twins in which the

orientation of twinning symmetry element is ambiguously determined).

For instance, a twin with the symmetry 4/m' of a crystal of class 4 is rigid,

because the orientation of (001) twnining plane is unambiguously determi-

ned. A twin with 4m'm' symmetry of a crystal of the same class is

nonrigid, because twinning over any of (hko) planes leads to the same twin

symmetry.

The derivation of all symmetry groups and classification of twins on

the basis of symmetry do not take into account the orientation of a twin-

ning symmetry elements with respecting to componnent lattice. However,

in the course of X-ray structural studies the orientation of twinning sym-

metry elements in a crystal lattice is of major importance, because it is res-

ponsible for the influence of twinning on the diffraction pattern.

Supposing, twin components have lattices L' and L" which can be

described by primitive unit cells built on triplets of noncomplanar vectors

a'; and a'', respectively. Let the translation vectors of lattice L" be connec-

ted with translation vectors of lattice L' by a linear combination:

a" = E tij a'j (2)

where tij are elements of matrix T, characterizing twinning symmetry. De-

pending on the twinning symmetry element and its orientation respecting

to component lattice, L' and L" lattices can have a common nodal raw,

common nodal plane and common sublattice F. In particular case, F can

coincide with L' and L" lattices. According to these three possibilities, we

distinguished "one-dimensional periodic", "two-dimensional periodic"

and "three-dimensional periodic" twins respectively. 1,6 In "three-dimen-

sional periodic" twins there exists a lattice F, in which translation vectors
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are the translation vectors for all the twin domains. This lattice F should,
naturally, be considered as the lance of the twin and it has been called twin
lattice. There are no particular problems in the methods of X-ray structur-
al analysis of "one-dimensional periodic" or "two-dimensional periodic"
twins. The diffraction pattern from such twins contains split reflections
that readily indicate twinning, and it is possibilc to measure diffraction re-
flections from the separate twin domains quite easily. Therefore below
only "three-dimensional" periodic twins will be considered.

It was G. Friedel who was the first one to tackle the problem of the
interrelation between twinning symmetry elements and the crystal lattice
of the initial single crystal.' Proceeding from the fact that the components
of "three-dimensional periodic" twins have coinciding or almost coinci-
ding sublattices, he formulated four alternative conditions one of which
the translation latice of a twin domain should satisfy:

1) the translation lattice possesses symmetry elements which are ab-
sent in the structural motif;

2) the translation lattice possesses elements of pseudosymmetry;
3) a simple lattice multiple to the translation one is characterized by

symmetry elements that are absent in the translation lattice itself;
4) a simple lattice multiple to the translation one is characterized by

pseudosymmetry elements.
Depending on a particular condition realized, G. Friedel singles out

four types of twinning: 1) twinning by merohedry, 2) twinning by
pseudomerohedry, 3) twinning by reticular merohedry and 4) twinning by
reticular pseudomerohedry.

The centre of inversion, crystallographic axes and a mirror symmetry
plane are the elements of twinning symmetry. Twinning by the inversion
centre almost leads to twinning by merohedry, because any translation lat-
tice obeys the inversion centre. Twinning by crystallographic axes or mi-
rror symmetry planes, depending on their orientation in the lattice, can
lead to any of the four types of twinning.

In order to have L' and L" lattices with coinciding or almost coinci-
ding I" and I"' sublattices, the twinning symmetry element should be a
symmetry or pseudosymmetry element of F and F" sublattices. Conse-
quently, twinning symmetry axes should coincide with the nodal raw per-
pendicular or almost perpendicular to the nodal plane of L' and L" latti-
ces. In the same way, twinning symmetry planes should coincide with the
nodal plane perpendicular or almost perpendicular to the nodal raw of L'
and L" lattices. In case the condition of the perpendicularity is roughly
fulfilled, twinning by pseudomerohedry or reticular pseudomerohedry
will take place. G. Friedel suggested to introduce the parameter w, charac-
terizing twins by pseudomerohedry. Twin aperture w is the angle between
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the nodal raw and the normal to the nodal plane. However, we readily see

that twinning by pseudomerohedry with aperture ow = 0 is possible. Let us

consider, for example, orthorhombic single crystals with the ratio a: b-1,

twinned by a four-fold axis coinciding with the c axis of the single crystal.

In this case the twinning axis is strictly perpendicular to the nodal plane

(001), consequently, o) = 0, nevertheless this is twinning by pseudome-

rohedry, as L' and L" coincide only roughly.

Thus, the condition of the nodal raw being perpendicular to the nodal
plane is not a strict criterion for distinguishing between twinning by me-
rohedry and twinning by pseudomerohedry, it is correct only in the case
when twinning symmetry elements are second-order elements. A strict
criterion for determining twinning by merohedry or by pseudomerohedry
was offered by A Santoro.' He suggested the matrix A as a criterion of
pseudomerohedry or reticular pseudomerohedry of the twinning law.
This matrix is determined in the following way:

Ai;
=

( 1 tin tin Amn -Aij) / A;; Ai;' (3)
m,n

where tip are elements of the twinning symmetry matrix, Aid are elements
of the metrical tensor of the lattices L' and L" and they are determined in
the following way:

Ail
= ai ' aj.

If all the components of Aid are equal to zero, twinning by merohedry
takes place. If at least one of them differs from zero, twinning by pseudo-
merohedry will take place. The Aid matrix is an analogue of twin aperture
and demonstrates the extent of the coincidence of L' and L" lattices.

In case F and F" lattice fully coincide, the lattice F = r' = F" is, un-
doubtedly, a twin lattice. In the case of twins by pseudomerohedry none
of the I" or F" lattices, strictly speaking, are translational for both
components simultaneously. However, in this case the translation lattice
which is in the best agreement with both I" and F" lattices can be regarded
as a twin lattice. Apparently, the non-complanar vectors of that lattice
characterizing the primitive unit cell are determined in the following way:

ri = (r'i + r'i') / 2, (4)

where r'; and r';' are basic vectors of r' and F" latices respectively. We see
from (4) that such a determination of a twin lattice is good both for twins
by merohedry (it coincides with T' and F" lattices) and for twins by pseu-
domerohedry (it is better than any other lattice discribing translations of
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all twin domains). It should be noted that in the course of X-ray structural
analysis, a twin lattice acquires a peculiar sense, because the experimental
data obtained from a twin are indexed just according to this lattice.

The volume ratio of a primitive cell of the twin latitce F to the volume
of a primitive cell of single crystal lattice L is called a twin index.9

n = VF/VL (5)

The twin index is an important parameter that characterizes a diffrac-
tion pattern from a twin. We see from the determination of the twin index
(5) that this parameter allows one to distinguish between twinning by me-
rohedry and twinning by reticular merohedry. Proceeding from this, G.
Donnay suggested a new classification of twins: twinning by TLS (twin
lattice symmetry) - where a symmetry element of twinning is a symmetry
element of the lattice or sublattice of a twin domain and TLQS (twin latti-
ce quazi-symmetry), that is twinning by a pseudosymmetry element of the
lattice or sublattice of a twin domain.10 We readily see that twinning by
TLS includes twinning by merohedry (twin index equal to unity) and
twinning by reticular merohedry (twin index exceeds unity), while twin-
ning by TLQS combines twinning by pscudomerohedry (twin index si
equal to unity) and twinning by reticular pseudomerohedry (twin index
exceeds unity).

Thus, all the above parameters characterizing twins are of principal
importance during X-ray structural studies, because they determine
peculiar features of diffraction patterns from twins.

X-RAY STRUCTURAL STUDIES OF TWINS

X-rays are diffracted by twin domains incoherently, therefore, the
diffraction pattern from a twin is a superposition of diffraction patterns
from twin domains related by twinning symmetry element. Since "three-
dimensional periodic" twins have a twin lattice, whose translation vectors
are translation vectors for the all domains, then their diffraction patterns
may be indexed according to this twin lattice. Thus, the intensity of a
beam diffracted from a unit volume of a twin I(H), will have the following
form in each node of the reciprocal twin lattice H:

I(H) = u - J1(H) + (1 -u) - J,(H), (6)

where a is volume relation of the first twin domain to the twin volume,
J1(H) and J,(H) are intensities of X-rays diffracted from unit volumes of
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the first and second domains, respectively. During the data collection the

total intensities I(H) are collected , whereas to make the structural analysis

and carry out correct X-ray structural studies it is necesary to separate the

contributions of twin domaines J(H) in the total intensity. In order to

separate contributions made by twin domains additional information,

besides equation ( 6) is required.
First of all, the question about symmetry of the diffraction pattern of

the twin should be answered. Since the diffraction pattern of the twin is a

superposition of diffraction patterns of single-crystalline twin domains,

it also obeys the Friedel law (without account of anomalous scattering).

Consequently, the symmetry of the diffraction pattern of twins without

account of anomalous scattering is characterized by those symmetry

groups of twins which contain a centre of inversion . There are 10 such

groups. In cases when twin symmetry is within one of these ten groups the

symmetry group of the diffraction pattern coincides with that of the twin.

In order to determine symmetry group of diffraction pattern of the twins

whose symmetry groups do not contain a centre of inversion, such a cen-

tre should be added to the symmetry group. However, 21 out of 58 two-

coloured symmetry groups of twins contain a black-and-white inversion

centre that is responsible for twinning . An addition of a usual centre of in-

version to these groups makes them single-coloured and leads to 11 cen-

trosymmetric single-coloured groups that coincide with the Laue classes.

These groups describe those twins in which a twinning symmetry element

is a Laue class symmetry element. They are listed In Table 1. If diffraction

Table 1. Symmetry groups of twins with Laue-class symmetry element as twinning

symmetry element.

twin symmery
Symetry of diffraction

pattern of a twin

1' 1

2'/m, 2/m' 2/m

m'm'm' , mmm' mmm

3' 3

3'm, 3'm' 3m

4'/m', 4/m' 4/m

4/m'mm , 4/m'm'm', 4 '/m'mm' 4/mmm

6/m', 6'/m 6/m

6/m'mm, 6 /m'm'm', 6'/mmm' 6/mmm

m'3' m3

m'3'm, m'3'm' m3m
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patterns of these twin domains are superimposed equivalent reflections

overlap. Substituting J,(H) = J2(H) into ( 6), we obtain:

I(H) = J(H) (7)

We see from ( 7) that the diffraction patterns from such twins do not differ
from diffraction patterns of the separate twin domaines . Hence, it is im-
possible to determine such twins by X-ray diffraction analysis. It should
be noted that, since a twinning symmetry element is a symmetry element
of the Laue class for these twins, it is also a symmetry element of the lat-
tice of the twin domain. Hence, according to G. Friedel classification
they are twins by merohedry. The authors of" refer them to twins by
merohedry of class I. In the same paper all the symmetry classes which can
from twins by merohedry of class I are listed and the influence of such
twinning on the diffracton pattern is analyzed.

However, during the analysis of a diffraction pattern, only the Laue
class (the symmetry relating reflections with the same intensity) are deter-
mined, but not the symmetry group of the diffraction pattern of the twin.
It follows from (6) that the Laue class of the diffraction pattern depends
on twin volume ratio. For the same symmetry'group of diffraction pat-
terns of twins the Laue classes of diffraction patterns will be different, de-
pending on the value of the parameter a (a = 0.5 or a 0.5). Table 2 pre-

sents 37 symmetry groups of twins that can be distinguished by X-ray dif-
fraction analysis. They are united according to symmetry groups of dif-
fraction patterns of twins and, their Lane classes depending on the value

of a are indicated for each group. To solve the equation (6) one should de-

Table 2. Correlation between twin symmetry and the appropriate diffraction symmetry

Twin symmetry
Symmetry of the
diffraction pattern

Laue class
at a = 0 .5

Laue class
at a 0.5

2', m', 2'/m ' 2'/m' 2/m 1

m'm'2, m '2'm, 2'2' 2, m'm'm m ' m'm mmm 2/m

3m', 32', 3m' 3m' 3m 3

4', 4', 4'/m 4'/m 4/m 2/m

4'22', 4'm2', 4'2in', 4' mm', 4'/mmm ' 4'/mmm' 4/mmm 111111111

4m'm', 42'm', 42'2', 4/mm'm' 4/mm'm ' 4/mmm 4/m

6', 6', 6'/m 6'/m' 6/m 3

6'2m', 6'm2', 6'mm', 6'22', 6'/m'mm' 6'/m'mm ' 6/mmm 3m

62'm', 6m'm ', 62'2', 6/mm'm' 6 /mm'm' 6/mmm 6/m

4'3m', 4'32', m3m' m3m' m3m m3
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termine just the symmetry group of diffraction pattern of a twin, but not
the Laue class . We see from Table 2 that no more than two symmetry
groups of a diffraction pattern of a twin correspond to each Laue class.
Taking into account the fact that twin volume ratio is a ramdom factor
(depending on growth conditions , thermal treatment etc.), after we obtain
diffraction data from several different samples , we can assume with a great
degree of probability that twin volume ratio for at least one of them will
differ from 0.5 . Thus, ambiguous determination of the symmetry of the
diffraction pattern of a twin is retained only for the Laue classes 3 and
2/m. However , as mentioned in the previous section, a twinning symme-
try element is a symmetry element of a twin lattice . Consequently , in cases
of ambiguously determined symmetry of the diffraction pattern of a twin
it should be analyzed with account of the symmetry of a twin lattice. For
instance , if the Laue class of the diffraction pattern is 2/m and a 0.5, the
symmetry of the diffraction pattern from the twin is either 4' /m or m'm'm
(see table 2 ). If the symmetry of a twin lattice is mmm, the symmetry
group of the diffraction pattern of a twin is unambiguously determined as
m'm'm, for the symmetry of twin lattice 4/mmm the symmetry of the
diffraction pattern of a twin can be described both by symmetry group
4'/m and m'm'm. If the Laue class of the diffraction pattern is 3, the
symmetry of the diffraction pattern of a twin is either 3m' or 6' /m' (see ta-
ble 2). Similar to the above example, in this case, if the symmetry of the
twin lattice is 3m, the symmetry group of the diffraction pattern of a twin
is determined unambiguously , while for symmetry of a twin lattice 6/
mmm there is ambiguity , and both possible symmetry groups of the dif-
fraction pattern of a twin should be analyzed . The use of the data listed in
Table I and 2 facilitates the determination of symmetry group of the dif-
fraction pattern of a twin.

Supposing , the symmetry of a diffraction pattern of a twin is descri-
bed by the symmetry group G' , and the reciprocal twin lattice vectors HI
and H, are related by a twinning symmetry element. Then the intensities
of diffracted beams II and I, in nodes HI and H,, respectively, are as
follows:

I1=a.J1+(1-CO -J2

I2=a-J2+(1-a)-JI.
(8)

In the general case, if the twin volume ratio is unknown, the system of
equations (8) cannot be solved. To determine twin volume ratio D. Briton
suggested the following technique.12 Proceeding form (8) let us calculate
the following relationship:
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I1/(I1 + I2) = [1- a S (1- J1/J2)]/(1 + J1/J2)• (9)

The values J, and J2 are independent and assume only positive values, con-

sequently, the relationship J1/J2 assumes values within the interval [0, o].

The dependence of I,/(I, + I2) on J1/J2 is presented in Fig. 1. We see from

Fig. 1 that as the argument changes within [0, -] the function takes values

within [a, 1 - a]. It is impossible to construct the plot of the dependence

I1/(I1 + I2) on J1/J2 from X-ray diffraction data, but, calculating the relat-

ionship I,/(I, + I2) for all pairs of reflections that are related by a twinning

symmetry operation, we can determine the limit values of the function,

and, consequently, the twin volume ratio. Then, the system of equations

(8) can be solved using a defined value a.
In13 P. Murrey-Rust suggests another technique for finding the twin-

volume ratio, that slightly differ from the Briton method. The following

relation between I, and I2 values can be determined from (8):

I, = {[a + (1 - a) • J2/J,]/[(1 - CO + a • J2/J,]} • I. (10)

It is seen from (10) that I„ at a certain value of 12, depending on J2/J,, can

take values in the range [a'2/(1 - a), (1 - a) I2/a]. If we construct an exper-

imental plot of the dependence of I, on I2, all the points of the plot will

1-d

Is
Il + Ia

06

J;/J,
Fig. 1. Dependence of I1/(I1 + 12) on J,/J2, where I, and I, are the intensities of the diffracted

beams in nodes related by twinning symmetry operation, J, and J2 are the contributions of

twin domains into the total intensity.
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lie inside the sector formed by direct lines I, = [a/(1 - a)] - I2 and I1 = [(1
- a)/a] - 12 (Fig. 2). Calculating the angle 0 between the direct lines, that
determine the sector and the ordinate axis the value of a can be found
according to the following formula:

a/(1 - a) = tg (p (11)

Another procedure, that differs from the above one was suggested by

P. Fisher abd R. Sweet.14 They solved the system of equations (8) relative

to J1

J1 = [I2 - a • (I1 + 12)] /(1 - 2 • a). (12)

Substituting a definite value of a within the range [0,0.5] into equation (12)
we construct an experimental plot N(a), where N(a) is the number of J1
that at a given value a takes negative values. If the true value of a is ao. the
function N(a) within the interval [0, a0] will take a zero value, while in the
interval [a0, 0.5] the value of function will increase abruptly (Fig. 3). Using
the plot N(a) the value of ao is determined and at a given value ao the con-
tributions of twin domains J(H) in total intensity I(H) of overlapped re-
flections are determined.

I,

Iz

Fig. 2. Experimental dependence I, on 12, where I, and 12 are the intensities of diffracted
beams in nodes, related by twinning symmetry operation.

[Butll. Soc. Cat. Cien.], Vol. X1I, Num. 2, 1991
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A

oLo

oc.

0.5

Fig. 3. Experimental plot of funcition N(a) used for determining twin volume ratio.

It is not sufficient to solve the equation (6) for an unambiguous X-ray
study. In order to do this we should determine the lattice of the single
crystalline twin domaine and the symmetry of its diffraction pattern. If the
twin index is n = 1, this problem becomes trivial, because the component
lattice coincides with the twin lattice, while the symmetry of the diffrac-
tion pattern from a twin. In the case the twin index differs from unity, the
twin lattice is only a sublattice of the component lattice. In this case a pri-
mitive cell of a twin lattice contains (n - 1) nodes of the component lattice.
Therefore, when the diffraction pattern of a twin domaine is described ac-
cording to a twin lattice then the (n - 1)/n part of nodes of the twin reci-
procal lattice is, in fact, zero, as there appear absences due to the centering
of the unit cell of twin lattice. When the diffraction patterns of the twin
domains are superimposed, some zero nodes of the diffraction pattern of
one domaine coincides with the reflections from another domaine, while
the other nodes coincide with the same zero nodes of another domaine.
This is the reason for the appearnce of peculiar "twin" absences at n = 1
that should assist the investigator in finding the component lattice and in
determining the symmetry of the diffraction pattern of twin domaine. It
should be noted that at n = I the symmetry of the diffraction pattern of
a twin domain is not always described by a monochromatic subgroup of
the symmetry group of the diffraction pattern of a twin. If the absences

[Butll. Soc. Cat . Cien.], Vol. X II, Num. 2, 1991
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due to the space group of the single crystal lie within certain planes or on
certain axes, twin absences are arranged in three-dimensional reciprocal
space. That is why the analysis of the diffraction pattern of a twin carried
out with the aim of determining the component lattice proceeding from
twin absences, is a complicated problem. In fact, this problem can be sol-
ved effectively by applying the function of interatomic vectors.15

ABSTRACT

Methods of structural investigations of twinned crystals are described in this pa-
per. The problems of classification of twins based on twin domains symmetry and re-
lations between their lattices are considered. The problem of reciprocal space symme-
try of twinned crystals is also considered. The results of such consideration are listed
in two tables, these may be usefull for the determination of possible single crystal
symmetry from analysis of twinned crystals diffraction pattern.
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