1,516 research outputs found

    Evolution of shower parton distributions in a jet from quark recombination model

    Full text link
    The evolution of shower parton distributions in a jet is investigated in the framework of quark recombination model. The distributions are parameterized and the Q2Q^2 dependence of the parameters is given by polynomials of ln⁥Q2\ln Q^2 for a wide range of Q2Q^2.Comment: 5 pages in RevTeX, 3 figures in ep

    Void Analysis of Hadronic Density Fluctuations at Phase Transition

    Get PDF
    The event-to-event fluctuations of hadron multiplicities are studied for a quark system undergoing second-order phase transition to hadrons. Emphasis is placed on the search for an observable signature that is realistic for heavy-ion collisions. It is suggested that in the 2-dimensional y-phi space the produced particles selected in a very narrow p_T window may exhibit clustering patterns even when integrated over the entire emission time. Using the Ising model to simulate the critical phenomenon and taking into account a p_T distribution that depends on the emission time, we study in the framework of the void analysis proposed earlier and find scaling behavior. The scaling exponents turn out to be larger than the ones found before for pure configurations without mixing. The signature is robust in that it is insensitive to the precise scheme of simulating time evolution. Thus it should reveal whether or not the dense matter created in heavy-ion collisions is a quark-gluon plasma before hadronization.Comment: 11 pages in LaTeX + 6 figures in p

    Parton Branching in Color Mutation Model

    Get PDF
    The soft production problem in hadronic collisions as described in the eikonal color mutation branching model is improved in the way that the initial parton distribution is treated. Furry branching of the partons is considered as a means of describing the nonperturbative process of parton reproduction in soft interaction. The values of all the moments, and CqC_q, for q=2,...,5, as well as their energy dependences can be correctly determined by the use of only two parameters.Comment: 8 pages (LaTeX) + 2 figures (ps files), submitted to Phys. Rev.

    Critical Behavior of Hadronic Fluctuations and the Effect of Final-State Randomization

    Get PDF
    The critical behaviors of quark-hadron phase transition are explored by use of the Ising model adapted for hadron production. Various measures involving the fluctuations of the produced hadrons in bins of various sizes are examined with the aim of quantifying the clustering properties that are universal features of all critical phenomena. Some of the measures involve wavelet analysis. Two of the measures are found to exhibit the canonical power-law behavior near the critical temperature. The effect of final-state randomization is studied by requiring the produced particles to take random walks in the transverse plane. It is demonstrated that for the measures considered the dependence on the randomization process is weak. Since temperature is not a directly measurable variable, the average hadronic density of a portion of each event is used as the control variable that is measurable. The event-to-event fluctuations are taken into account in the study of the dependence of the chosen measures on that control variable. Phenomenologically verifiable critical behaviors are found and are proposed for use as a signature of quark-hadron phase transition in relativistic heavy-ion collisions.Comment: 17 pages (Latex) + 24 figures (ps file), submitted to Phys. Rev.

    Universal behavior of multiplicity differences in quark-hadron phase transition

    Full text link
    The scaling behavior of factorial moments of the differences in multiplicities between well separated bins in heavy-ion collisions is proposed as a probe of quark-hadron phase transition. The method takes into account some of the physical features of nuclear collisions that cause some difficulty in the application of the usual method. It is shown in the Ginzburg-Landau theory that a numerical value Îł\gamma of the scaling exponent can be determined independent of the parameters in the problem. The universality of Îł\gamma characterizes quark-hadron phase transition, and can be tested directly by appropriately analyzed data.Comment: 15 pages, including 4 figures (in epsf file), Latex, submitted to Phys. Rev.

    Erraticity of Rapidity Gaps

    Full text link
    The use of rapidity gaps is proposed as a measure of the spatial pattern of an event. When the event multiplicity is low, the gaps between neighboring particles carry far more information about an event than multiplicity spikes, which may occur very rarely. Two moments of the gap distrubiton are suggested for characterizing an event. The fluctuations of those moments from event to event are then quantified by an entropy-like measure, which serves to describe erraticity. We use ECOMB to simulate the exclusive rapidity distribution of each event, from which the erraticity measures are calculated. The dependences of those measures on the order of qq of the moments provide single-parameter characterizations of erraticity.Comment: 10 pages LaTeX + 5 figures p

    Particle correlations at RHIC from parton coalescence dynamics -- first results

    Full text link
    A new dynamical approach that combines covariant parton transport theory with hadronization channels via parton coalescence and fragmentation is applied to Au+Au at RHIC. Basic consequences of the simple coalescence formulas, such as elliptic flow scaling and enhanced proton/pion ratio, turn out to be rather sensitive to the spacetime aspects of coalescence dynamics.Comment: Contribution to Quark Matter 2004 (January 11-17, 2004, Oakland, CA). 4 pages, 2 EPS figs, IOP style fil

    Multiplicity Distributions of Squeezed Isospin States

    Get PDF
    Multiplicity distributions of neutral and charged particles arising from squeezed coherent states are investigated. Projections onto global isospin states are considered. We show how a small amount of squeezing can significantly change the multiplicity distributions. The formalism is proposed to describe the phenomenological properties of neutral and charged particles anomalously produced in hadronic and nuclear collisions at very high energies.Comment: 17 pages, 6 figures sent upon request ([email protected]

    On Nonlinear Diffusion with Multiplicative Noise

    Full text link
    Nonlinear diffusion is studied in the presence of multiplicative noise. The nonlinearity can be viewed as a ``wall'' limiting the motion of the diffusing field. A dynamic phase transition occurs when the system ``unbinds'' from the wall. Two different universality classes, corresponding to the cases of an ``upper'' and a ``lower'' wall, are identified and their critical properties are characterized. While the lower wall problem can be understood by applying the knowledge of linear diffusion with multiplicative noise, the upper wall problem exhibits an anomaly due to nontrivial dynamics in the vicinity of the wall. Broad power-law distribution is obtained throughout the bound phase.Comment: 4 pages, LaTeX, text and figures also available at http://matisse.ucsd.edu/~hw

    Quark Coalescence for Charmed Mesons in Ultrarelativistic Heavy-Ion Collisions

    Get PDF
    We investigate effects of charm-quark interactions in a Quark-Gluon Plasma on the production of DD and J/ψJ/\psi mesons in high-energy heavy-ion collisions. Employing a previously constructed coalescence model that successfully reproduces the transverse momentum (pTp_T) spectra and elliptic flow (v2(pT)v_2(p_T)) of light hadrons at RHIC from underlying light-quark distributions at the phase transition temperature TcT_c, DD-meson and J/ψJ/\psi pTp_T spectra are evaluated. For the charm-quark distributions, we consider two limiting scenarios: (i) {\em no} rescattering, corresponding to perturbative QCD spectra and (ii) {\em complete} thermalization including transverse expansion. With the DD-meson spectra acquiring a minimal v2v_2 inherited from their light-quark content, the corresponding semileptonic decay spectra of single electrons are found to practically preserve the v2v_2 of the parent particles, exhibiting marked differences between the pQCD and thermal scenarios for pT≄1p_T\ge 1 GeV. Likewise, the pTp_T-spectra and yields of J/ψJ/\psi's differ appreciably in the two scenarios.Comment: 6 pages, 4 figures, version published in PLB with updated figure
    • 

    corecore