2,387 research outputs found

    Numerical computation of an Evans function for travelling waves

    Get PDF
    We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller-Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥2δc \geq 2 \sqrt{\delta} in the F-KPP equation.Comment: 37 pages, 11 figure

    Finfisheries Problems and Approaches

    Get PDF
    The fisheries data of principal concern at this conference are those which provide an accurate description of the harvest from the resource. Most often, one thinks of the standard reference fishery data from commercial fish landings: pounds by species, dockside dollar value, location of the catch, gear used, and number of fishermen. These data have been widely used by biologists and managers to evaluate the status of particular stocks and trends in the fishery. An example of a recent evaluation for Chesapeake Bay fisheries is Rothschild et ·a1. (1981). Several underlying truths must be borne in mind when discussing territorial seas fisheries management and the statistical database.https://scholarworks.wm.edu/vimsbooks/1152/thumbnail.jp

    Intelligent Integration of a Wind Farm to an Utility Power Network with Improved Voltage Stability

    Get PDF
    The increasing effect of wind energy generation will influence the dynamic behavior of power systems by interacting with conventional generation and loads. Due to the inherent characteristics of wind turbines, non-uniform power production causes variations in system voltage and frequency. Therefore, a wind farm requires high reactive power compensation. Flexible AC transmission systems (FACTS) devices such as SVCs inject reactive power into the system which helps in maintaining a better voltage profile. This paper presents the design of a linear and a nonlinear coordinating controller between a SVC and the wind farm inverter at the point of interconnection. The performances of the coordinating controllers are evaluated on the IEEE 12 bus FACTS benchmark power system where one of the generators is replaced by a wind farm supplying 300 MW. Results are presented to show that the voltage stability of the entire power system during small and large disturbances is improved

    The effect of pore size on cell adhesion in collagen-GAG scaffolds.

    Get PDF
    The biological activity of scaffolds used in tissue engineering applications hypothetically depends on the density of available ligands, scaffold sites at which specific cell binding occurs. Ligand density is characterized by the composition of the scaffold, which defines the surface density of ligands, and by the specific surface area of the scaffold, which defines the total surface of the structure exposed to the cells. It has been previously shown that collagen-glycosaminoglycan (CG) scaffolds used for studies of skin regeneration were inactive when the mean pore size was either lower than 20 microm or higher than 120 microm (Proc. Natl. Acad. Sci., USA 86(3) (1989) 933). To study the relationship between cell attachment and viability in scaffolds and the scaffold structure, CG scaffolds with a constant composition and solid volume fraction (0.005), but with four different pore sizes corresponding to four levels of specific surface area were manufactured using a lyophilization technique. MC3T3-E1 mouse clonal osteogenic cells were seeded onto the four scaffold types and maintained in culture. At the experimental end point (24 or 48 h), the remaining viable cells were counted to determine the percent cell attachment. A significant difference in viable cell attachment was observed in scaffolds with different mean pore sizes after 24 and 48 h; however, there was no significant change in cell attachment between 24 and 48 h for any group. The fraction of viable cells attached to the CG scaffold decreased with increasing mean pore size, increasing linearly (R2 = 0.95, 0.91 at 24 and 48 h, respectively) with the specific surface area of the scaffold. The strong correlation between the scaffold specific surface area and cell attachment indicates that cell attachment and viability are primarily influenced by scaffold specific surface area over this range (95.9-150.5 microm) of pore sizes for MC3T3 cells

    Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds.

    Get PDF
    The cellular structure of collagen-glycosaminoglycan (CG) scaffolds used in tissue engineering must be designed to meet a number of constraints with respect to biocompatibility, degradability, pore size, pore structure, and specific surface area. The conventional freeze-drying process for fabricating CG scaffolds creates variable cooling rates throughout the scaffold during freezing, producing a heterogeneous matrix pore structure with a large variation in average pore diameter at different locations throughout the scaffold. In this study, the scaffold synthesis process was modified to produce more homogeneous freezing by controlling of the rate of freezing during fabrication and obtaining more uniform contact between the pan containing the CG suspension and the freezing shelf through the use of smaller, less warped pans. The modified fabrication technique has allowed production of CG scaffolds with a more homogeneous structure characterized by less variation in mean pore size throughout the scaffold (mean: 95.9 microm, CV: 0.128) compared to the original scaffold (mean: 132.4 microm, CV: 0.185). The pores produced using the new technique appear to be more equiaxed, compared with those in scaffolds produced using the original technique

    The effect of mixing entire male pigs prior to transport to slaughter on behaviour, welfare and carcass lesions

    Get PDF
    peer-reviewedData set for article is also provided.Research is needed to validate lesions recorded at meat inspection as indicators of pig welfare on farm. The aims were to determine the influence of mixing pigs on carcass lesions and to establish whether such lesions correlate with pig behaviour and lesions scored on farm. Aggressive and mounting behaviour of pigs in three single sex pens was recorded on Day −5, −2, and −1 relative to slaughter (Day 0). On Day 0 pigs were randomly allocated to 3 treatments (n = 20/group) over 5 replicates: males mixed with females (MF), males mixed with males (MM), and males unmixed (MUM). Aggressive and mounting behaviours were recorded on Day 0 at holding on farm and lairage. Skin/tail lesions were scored according to severity at the farm (Day −1), lairage, and on the carcass (Day 0). Effect of treatment and time on behaviour and lesions were analysed by mixed models. Spearman rank correlations between behaviour and lesion scores and between scores recorded at different stages were determined. In general, MM performed more aggressive behaviour (50.4 ± 10.72) than MUM (20.3 ± 9.55, P < 0.05) and more mounting (30.9 ± 9.99) than MF (11.4 ± 3.76) and MUM (9.8 ± 3.74, P < 0.05). Skin lesion scores increased between farm (Day −1) and lairage (P < 0.001), but this tended to be significant only for MF and MM (P = 0.08). There was no effect of treatment on carcass lesions and no associations were found with fighting/mounting. Mixing entire males prior to slaughter stimulated mounting and aggressive behaviour but did not influence carcass lesion scores. Carcass skin/tail lesions scores were correlated with scores recorded on farm (rskin = 0.21 and rtail = 0.18, P < 0.01) suggesting that information recorded at meat inspection could be used as indicators of pig welfare on farm.This study was part of the PIGWELFIND project funded by the Department of Agriculture, Food and the Marine (DAFM), Ireland

    3D Compartmentalised Human Pluripotent Stem Cell-derived Neuromuscular Co-cultures.

    Get PDF
    Human neuromuscular diseases represent a diverse group of disorders with unmet clinical need, ranging from muscular dystrophies, such as Duchenne muscular dystrophy (DMD), to neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS). In many of these conditions, axonal and neuromuscular synapse dysfunction have been implicated as crucial pathological events, highlighting the need for in vitro disease models that accurately recapitulate these aspects of human neuromuscular physiology. The protocol reported here describes the co-culture of neural spheroids composed of human pluripotent stem cell (PSC)-derived motor neurons and astrocytes, and human PSC-derived myofibers in 3D compartmentalised microdevices to generate functional human neuromuscular circuits in vitro. In this microphysiological model, motor axons project from a central nervous system (CNS)-like compartment along microchannels to innervate skeletal myofibers plated in a separate muscle compartment. This mimics the spatial organization of neuromuscular circuits in vivo. Optogenetics, particle image velocimetry (PIV) analysis, and immunocytochemistry are used to control, record, and quantify functional neuromuscular transmission, axonal outgrowth, and neuromuscular synapse number and morphology. This approach has been applied to study disease-specific phenotypes for DMD and ALS by incorporating patient-derived and CRISPR-corrected human PSC-derived motor neurons and skeletal myogenic progenitors into the model, as well as testing candidate drugs for rescuing pathological phenotypes. The main advantages of this approach are: i) its simple design; ii) the in vivo-like anatomical separation between CNS and peripheral muscle; and iii) the amenability of the approach to high power imaging. This opens up the possibility for carrying out live axonal transport and synaptic imaging assays in future studies, in addition to the applications reported in this study. Graphical abstract Graphical abstract abbreviations: Channelrhodopsin-2 (CHR2+), pluripotent stem cell (PSC), motor neurons (MNs), myofibers (MFs), neuromuscular junction (NMJ)
    • …
    corecore