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ABSTRACT 

 In-situ zircon U-Pb isotopic and monazite Th-U-Pb chemical ages from leucosome in 

migmatitic paragneiss at Kanjampara in the Trivandrum Block, India, demonstrate the 

occurrence of high-T metamorphism and anatexis at 1.92 Ga. This Palaeoproterozoic 

tectonothermal event was strongly overprinted by the main Neoproterozoic-Cambrian 

granulite facies tectonism which itself involved significant partial melting and formation of 

garnet-bearing assemblages at 0.65 GPa and >820-860ºC. Monazite grains, which enclose 

zircon grains and locally preserve Palaeoproterozoic chemical age domains, were extensively 

reset and recrystallized at 565 ± 6 Ma. These monazite grains were further modified to form 

high-Th cuspate rims at 517 ± 15 Ma, equivalent to the lower intercept age for extensive Pb-

loss from the highly discordant 1.92 Ga zircon, 528 ± 18 Ma. These results confirm that at 

least some of the metasedimentary paragneisses in the Trivandrum Block are 

polymetamorphic, initially metamorphosed in the Palaeoproterozoic in an event older than 

the 1.89-1.85 Ga granitic orthogneisses recognised from the area. The nature of the 

relationship between the paragneisses and older (2.0-2.1 Ga) granitic and charnockitic 

orthogneisses of the Trivandrum and Nagercoil Blocks, in particular whether they share the 

same Palaeoproterozoic history or were interleaved after 1.92 Ga, requires further 

investigation focussed on the presence or absence of the isotopic imprint of this event in both 

rock suites throughout the area.  

The growth or recrystallisation of monazite at ca. 565 Ma and its further modification at ca. 

520 Ma indicates that the high-T metamorphism in the Pan-African was long-lived, with a 

duration of at least 45 Myr. This adds further weight to recent proposals, based on zircon-

monazite isotopic studies from other localities in the Trivandrum Block, that the region 

formed the mid- to deep-crust of a long-lived collisional hot orogenic belt that welded 

Gondwana from ca. 580-510 Ma.  

 

Keywords: zircon, monazite, geochronology, Gondwana, Trivandrum Block 
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INTRODUCTION 

Definition of the complex polyphase tectonothermal histories of the distinct and formerly 

separate crustal blocks that amalgamated in the late Neoproterozoic-Cambrian to form 

Gondwana is central to the recognition of crustal sutures and elucidation of the sequences of 

events through which Supercontinent amalgamation was achieved (Collins et al., 2007, 

2014). Recognition of former tectonic relationships between blocks, their affinities, and 

potential correlations with crustal blocks elsewhere that have survived the fragmentation of 

older Supercontinents, relies on detailed evidence for local and regional event sequences tied 

to geochronology and isotopic fingerprinting, informing models for the configuration of 

continents through time.  

Many of the crustal blocks that share late Neoproterozoic-Cambrian orogenesis in Southern 

India, Sri Lanka, Madagascar and East Antarctica are reworked polymetamorphic terrains 

and as such preserve, to varying extents, records of older orogens that may have been linked 

in former Supercontinents. For example, in East Antarctica the Prydz Belt, a region affected 

by intense 550-510 Ma tectonism, nevertheless preserves convincing evidence for 

tectonothermal and magmatic events in the period 990-930 Ma that allow its identification as 

a intensely reworked extension of the nearby Rayner Complex (Liu et al., 2009, 2013; Grew 

et al., 2012, 2013; Harley et al., 2013) rather than it being a tectonically ‘juvenile’ orogen 

characterised by new crust and paragneisses derived from late-Neoproterozoic basinal 

sediments (Kelsey et al., 2008a). 

Similar issues surround interpretations of the high-grade crustal blocks that make up Southern 

India (Collins et al., 2014). Recent geological and isotopic studies in this region have 

identified the NW-SE trending Achankovil Shear Zone (AKSZ) as a major terrain boundary 

separating the Southern Madurai Block (SMB), with which it has strong protolith and event 

affinities, from the Trivandrum and Nagercoil Blocks to the SW. Detailed U-Pb and Hf 

isotopic analysis of granitic and charnockitic orthogneisses from the Trivandrum and 

Nagercoil Blocks that indicate the crystallisation of their magmatic precursors at 2.1-1.77 Ga 

(Whitehouse et al., 2014; Kroner et al., 2015; Johnson et al., 2015) support this distinction, as 

the felsic orthogneisses of the SMB and AKSZ were formed from 1.0-1.1 Ga magmatic rocks 

sourced from crust with model ages of 1.7-1.0 Ga (Plasva et al., 2012, 2014). These isotopic 

studies, however, do not resolve the original relationships between the Palaeoproterozoic 

orthogneiss precursors in the Trivandrum Block and the abundant metasediments with which 

they share late Neoproterozoic to Cambrian high-grade metamorphism and deformation. A 
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number of relationships are possible. If the orthogneiss precursors were basement to some, or 

all, of metasedimentary precursors then those could be significantly younger and potentially 

related to the Neoproterozoic metasediments recognised from the SMB and AKSZ. 

Alternatively, some or all of the orthogneiss precursors in the Trivandrum Block may have 

been intrusive into metasediments or their precursor sediments, in which case the latter would 

be at least Palaeoproterozoic in depositional age, share a common history with the 

orthogneisses from at least 1.85 Ga and hence be entirely unrelated to the metasediments of 

the SMB and AKSZ. Finally, some or all of the metasedimentary packages and orthogneisses 

in the Trivandrum Block may have been separate and unrelated until interleaving, perhaps 

during the Neoproterozoic. In order to resolve these issues it is critical to determine not only 

the detrital mineral record of the Trivandrum Block metasedimentary gneisses but also 

establish the nature of any Palaeoproterozoic events that may be preserved within them. 

This study reports the results of an integrated petrological, metamorphic and isotopic study of 

metasedimentary gneisses from Kanjampara quarry (KNJ) in the central area of the 

Trivandrum Block, with a focus on the chemical and isotopic age and event record preserved 

in monazite and zircon grains within a representative migmatitic leucosome. Zircon, and to a 

lesser extent monazite, is found to preserve strong evidence for a major metamorphic event 

involving anatexis and melt segregation at >1.9 Ga. This indicates that at least some of the 

metasediments in the Trivandrum Block are polymetamorphic, older than many of the 

orthogneisses with which they were co-deformed in the Neoproterozoic, and unrelated to the 

metasediments of the neighbouring crustal blocks to the NE of the TB. 

GEOLOGICAL CONTEXT  

The Trivandrum Block (Fig. 1; Santosh, 1996; Collins et al., 2014) is an elongate, NW-SE 

trending gneiss complex that forms part of the Southern Granulite Terrain of India. It is 

bounded to its NE and separated from the Southern Madurai Block (SMB) by the Achankovil 

Shear Zone (AKSZ), and bounded to the SW by the Nagercoil Block (NB). Each of these 

blocks share latest Neoproterozoic to Cambrian (ca. 570-515 Ma) high-grade metamorphic 

and deformational events associated with the amalgamation of East Gondwana (e.g., Braun et 

al., 1998; Braun, Kriegsman, 2003; Cenki, Kriegsman, 2005; Santosh et al., 2003, 2006, 

2009; Collins et al., 2007; Collins et al., 2014; Clark et al., 2015; Johnson et al., 2015; Taylor 

et al., 2015). 
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The Southern Madurai Block (SMB), is comprised of orthogneisses whose magmatic 

precursors were formed in the late Mesoproterozoic and Neoproterozoic at 1.1-1.0 Ga (Plavsa 

et al. 2012) and metasedimentary gneisses with detrital zircon ages between 1.5 Ga and 670 

Ma (Plasva et al., 2014). Neodymium model ages for SMB gneisses range between 2.0–1.2 

Ga (Bartlett et al., 1998; Harris et al., 1994; Plasva et al., 2012), whilst zircon Hafnium model 

ages for the orthogneisses are 1.7-1.0 Ga (Collins et al., 2007, 2014; Plasva et al., 2014). 

Like the SMB, the Achankovil Shear Zone (AKSZ) immediately to the NE of the Trivandrum 

Block contains Neoproterozoic metasediments (Collins et al., 2007, 2014; Taylor et al., 2015) 

that preserve Mesoproterozoic Nd model ages (1.4-1.3 Ga: Brandon and Meen, 1995; Bartlett 

et al., 1998; Cenki et al., 2004), U–Pb detrital zircon age spectra (Collins et al., 2007; Santosh 

et al., 2006, 2009; Taylor et al., 2015) and zircon Hf isotopic compositions (Plavsa et al., 

2014). The Neoproterozoic metasedimentary packages of the SMB and AKSZ are interpreted 

as the fill of a juvenile late-Neoproterozoic rift-related basin formed on and adjacent to the 

Madurai Block proper (Plasva et al., 2012; Collins et al., 2014). Consequently, the AKSZ is 

recognised as a major structural and isotopic boundary separating the TB from the SMB. 

The Nagercoil Block (NB), located to the SW of the Trivandrum Block, preserves massif 

type charnockites with emplacement ages of 2.1-2.0 Ga and Hf and Nd model ages ranging 

from Archaean to Palaeoproterozoic (2.8-2.2 Ga), identical to the protoliths of charnockites 

from within the Trivandrum Block itself (Ghosh et al., 2004; Cenki et al., 2004; Kröner et al., 

2012; Kröner et al., 2015; Johnson et al., 2015). The protolith, model age and metamorphic 

age record of the Nagercoil Block (NB) indicates that it is essentially contiguous with the 

Trivandrum Block (TB) (Kröner et al., 2015; Johnson et al., 2015).  

The Trivandrum Block (TB) itself is comprised dominantly of granulite-facies 

metasedimentary rocks including migmatitic garnet-biotite-quartz-feldspar gneisses and 

garnet-cordierite-sillimanite gneisses (khondalites), as well as granitic orthogneisses, 

charnockites and localised mafic granulites. Zircon grains in granitic and charnockitic 

orthogneisses indicate protolith ages of 2.1-2.0 Ga, 1.88-1.84 Ga and 1.76 Ga (Kröner et al., 

2012, 2015; Whitehouse et al., 2014), and an augen granite gneiss has been dated at 1.55 Ga 

(Kröner et al., 2012). The TB metasedimentary gneisses record Archaean (3.3-2.7 Ga) to 

Palaeoproterozoic (2.0 Ga) model ages (Cenki et al., 2004; Choudhary et al., 1992; Harris et 

al., 1994). Detrital zircon cores preserved within strongly overprinted grains record 

Neoarchaean (2.7-2.5 Ga) to Palaeoproterozoic (2.2-1.9 Ga) 207Pb/206Pb ages, from which 

Collins et al. (2007) have inferred a maximum depositional age of 1.9 Ga, whilst Santosh et 
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al. (2005, 2006) interpreted the maximum depositional age to be as young as 610 Ma based 

on chemical ages for zircon cores in their samples. In contrast, based on the observation that 

2.07 Ga charnockite at Kottaram in the Nagercoil Block intrudes a paragneiss raft Kröner et 

al. (2015) suggested a minimum depositional age of 2.1 Ga for the sedimentary precursors of 

the paragneisses, similar to that suggested by Bartlett et al. (1998) from detrital zircon age 

data. Based on the presence of the 2.1-2.0 Ga and 1.77 Ga orthogneisses Kröner et al. (2015) 

further speculated that the TB may correlate with the North China Khondalite Belt, a region 

that records high-grade metamorphism at 1.92 Ga Ma to 1.85 Ga.  

The generally preserved regional granulite-facies metamorphism and migmatisation in the TB 

is latest Neoproterozoic to Cambrian in age. Metamorphic ages defined from the lower 

intercepts of zircon U-Pb discordia and near-concordant zircon rims in orthogneisses lie in 

the range 570-515 Ma (e.g. Whitehouse et al., 2014; Kröner et al., 2012, 2015), with 

concordant soccerball-type zircon grains in leucogranites yielding ages of 544 ± 5 Ma 

(Kröner et al., 2015). Although Collins et al. (2007) found a significant proportion of 

metamorphic U-Pb zircon in the metasedimentary gneisses to lie in the age range 513 ± 6 Ma, 

most zircon ages obtained from migmatitic leucosomes are in the range 570-530 Ma (Braun 

et al., 1998; Braun and Bröcker, 2004; Braun, 2006; Cenki et al., 2004; Shabeer et al., 2005; 

Harley and Nandakumar, 2014; Taylor et al., 2014). These ages overlap broadly with 

monazite chemical and isotopic ages (Bindu et al., 1998; Braun et al., 1998; Santosh et al., 

2003, 2006; Harley and Nandakumar, 2014) for the same groups of gneisses. Taylor et al. 

(2014) reported 585 ± 10 Ma monazite and 523 ± 7 Ma zircon grains from a garnet-biotite 

gneiss at Kottavattom, inferring from these that HT-UHT metamorphism lasted for some 60 

Myr from its onset to late-stage melt crystallisation. This is consistent with Harley and 

Nandakumar (2014), who obtained ages of 545 Ma and 535 Ma for anatectic zircon and 

monazite grains respectively, and interpreted these to record cooling from peak 

metamorphism in the central TB. Taylor et al. (2014) also documented a later phase of post-

peak fluid access associated with in-situ charnockitisation, which resulted in monazite 

dissolution-precipitation at ca. 495 Ma. This age is considerably younger than U-Pb titanite 

ages that indicate cooling to <600°C by 520 Ma in the TB (Shabeer et al., 2005).  

METHODS 

Whole-rock major element compositions of two leucogranitic gneisses (KNJ1, KNJ3) and 

one migmatitic gneiss (KNJ2) were determined by XRF at the National Centre for Earth 

Science Studies (NCESS), Thiruvananthapuram, using a Bruker S4 Pioneer sequential 
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wavelength-dispersive x-ray spectrometer. CL and BSE imaging of textures and minerals 

(zircon, monazite, garnet) was carried out on the Phillips XL30 Scanning Electron 

Microscope (SEM) housed at the School of Geosciences, University of Edinburgh, 

complemented by further imaging on the FEG-SEM. CL images were collected at 15kV and 

BSE images at 20kV. Garnet X-ray element mapping was carried out at the Division of Earth 

Sciences, Department of Environmental Changes, Faculty of Social and Cultural 

Studies,Kyushu University, Japan, on a JEOL-8900 electron microprobe under beam 

conditions of 15 kV / 20 nA for major elements and 20 kV / 100 nA for selected REE and P. 

EPMA Monazite Trace Element and Th-U-Pb chemical dating 

Electron microprobe (EPMA) REE, Ca, Si, P and Th-U-Pb analysis of monazite was carried 

out using a five-spectrometer CAMECA SX-100 electron microprobe at the University of 

Edinburgh, employing the REE, Th, U and Pb analytical procedures of D.A. Steele (Kelsey et 

al., 2003; Berry et al., 2008). Standards used for peak calibration on the SX-100 were Th-

oxide for Th, ScPO4 for P, REE (and Y) phosphates for each of La, Ce, Nd, Pr, Sm, Gd, Dy 

and Y, wollastonite for Ca, Pb-bearing glass K227 for Pb and Si, and pure depleted UO2 for 

U. Pb was analysed at 100 nA on two LPET spectrometers, each for 250 seconds on peak and 

150 seconds on background, leading to detection limits of approximately 100 ppm. Analysis 

time for U was 180 seconds on peak and 120 on background. An age of 506 ± 5.8 Ma (2 

standard error of the mean, MSWD = 0.35; 50 analyses) was obtained for the Moacyr 

monazite standard over the session in which the Kanjampara monazite analyses were 

obtained (Harley and Nandakumar, 2014), which is in agreement with the accepted 207Pb/235U 

ID-TIMS age of 504.3 ± 0.2 Ma obtained by Gasquet et al. (2010) from fragments of the 

same Moacyr monazite grain (Itambe region, Brazil, provided by J.-M. Montel).  

U-Th-Pb-REE analysis of KNJ monazite was also carried out in 2004 using a Camebax 

electron microprobe at the University of Edinburgh. In this set of analyses the suite of 

elements analysed was essentially the same as in that SX-100 protocol, but the use of a beam 

current maintained at 60nA coupled with the use of only 4 spectrometers with non-curved 

PET and LIF crystals resulted in lower count rates and hence lower overall precisions. 

Nevertheless, the Camebax data (20 analyses) referenced against the same Moacyr standard 

are consistent with the higher-precision data acquired on the SX-100 and are included here 

for completeness.  

SIMS Trace element Microanalysis Protocol 
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REE and other selected trace elements within zircon and garnet were determined using the 

CAMECA ims-4f ion microprobe at the University of Edinburgh. Analytical conditions and 

correction procedures follow those of Kelly and Harley (2005), modified from Hinton and 

Upton (1991). Analyses were conducted using a 6 nA O- primary beam with an accelerating 

voltage of -10 KeV, focused to a 20-25 µm spot. Secondary ions were extracted at a potential 

of 4500V and measured at a 120eV high-energy offset for zircon and 75eV energy offset for 

garnet, with a 19eV energy window. Trace element abundances were calculated relative to 

28Si and calibrated against the NIST-610 glass standard, with ion yields corrected by 

reference to the zircon standard SL1 (for zircon) and DDI garnet standard (for garnet). 

Analyses were performed for Si, P, Ca, Ti, Zr, Y, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, 

Dy, Ho, Er. Tm, Yb, Lu, Hf, Th, and U. Corrections for isobaric interferences on HREE 

arising from LREE oxide species were carried out using in-house software developed by 

R.W.Hinton. SIMS analysis of monazite followed similar calibration and correction 

procedures with ion yields adjusted by reference to the Moacyr standard and totals 

normalised to 100%. 

SIMS U-Pb Microanalysis Procedures 

U/Pb dating of zircon was carried out in-situ in thin section at the Edinburgh Ion Microprobe 

Facility (EIMF), using the CAMECA ims-1270 ion microprobe. The thin section and inserted 

standards were imaged in detail using transmitted and reflected light microscopes, as well as 

under SEM for CL and BSE imaging.  

Analytical procedures were based on those used by Kelly et al. (2008), and similar to those 

described by Schuhmacher et al. (1994) and Whitehouse et al. (1997). Correction for in-situ 

common Pb was made using the measured 204Pb counts above background at mass 204, and 

applying the present day common Pb composition. Correction of Pb/U ratios for instrument 

drift with time was made using the relationship between ln(Pb/U) vs ln(UO2/UO) (e.g. 

Schuhmacher et al., 1994; Whitehouse et al., 1997; Kelly et al., 2008).  

Elemental concentrations and Th/U ratios in unknown zircon grains were calculated by 

reference to measurements of Th/U and 208Pb/206Pb on the Geostandards 91500 zircon 

(Wiedenbeck et al., 1995, 2004: 206Pb/238U age of 1062.4 ± 10.3 Ma; assumed 206Pb/238U ratio 

= 0.17917; U = 81.2 ppm). Zircon U/Pb ratios were calibrated against measurements of the 

Plesovice zircon standard (Slama et al., 2008: 206Pb/238U age 337.1 ± 6.0 Ma (1assumed 

206Pb/238U ratio = 0.05369). 14 analyses of the Plesovice standard bracketing the KNJ 
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analyses in this study yielded an average 206Pb/238U ratio of 0.5369 ± 0.0003 corresponding to 

a 206Pb/238U age of 337.1 ± 1.8 Ma (2; MSWD = 0.45). 

Zircon data were reduced online using in-house data reduction spreadsheets developed by 

R.W. Hinton, and subsequently processed for age statistics using ISOPLOT/EX v3 (Ludwig, 

2003). Uncertainties on ages quoted for individual analyses (ratios and ages) are at the 1 

level. The Inverse (Tera Wasserburg) Concordia diagram of Fig. 15 was calculated with 

206Pb/238U and 207Pb/235U ratios corrected for the minor common Pb present as calculated 

from measured 204Pb; error ellipses presented in Fig. 15 are at 2 level.  

 

FIELD RELATIONS, PETROGRAPHY AND MINERAL CHEMISTRY 

The field relationships and dominant rock types at Kanjampara quarry (KNJ) are similar to 

those throughout the metasedimentary gneisses of the Trivandrum Block. The gneisses are 

migmatitic on centimetre to decimetre width scales, and possess a sub-vertical gneissic fabric 

defined by the elongation of garnet, cordierite and sillimanite in mesosomes, platy quartz in 

felsic layers within the mesosomes, and alignment of leucosomes and leucogranitic sheets 

(Fig. 2). Migmatitic mesosomes (KNJ2) contain Grt + Crd + Sill ± Bt + Kfs + Plag + Qz + 

Fe-Ti oxides; green spinel may occur as a minor phase associated with the ilmenite in some 

sillimanite-rich foliae. Leucosome / leucogranite horizons and veins (KNJ1, KNJ3) contain 

Grt + Kfs + Plag + Qz + Ilm ± Sil, whilst leucosome KNJ2 and its sub-sample ED10 contain 

additional cordierite. Accessory zircon, monazite and apatite occur in both leucosomes and 

migmatitic mesosome, with zircon and monazite being significantly more abundant (by an 

order of magnitude) in the leucosomes. 

The accessory mineral-rich KNJ2 leucosome sub-sample ED10 has been studied and 

analysed in depth in this work. ED10 preserves large porphyroblastic garnets (up to 5 mm in 

diameter) partially surrounded or replaced by radial symplectitic intergrowths of cordierite 

with quartz (Fig. 3a). The single large garnet porphyroblast in ED10 contains inclusions of 

zircon in its core regions but is strongly poikiloblastic and intergrown with quartz in its outer 

portions where those are not replaced by cordierite. This garnet is homogeneous in terms of 

its major element composition over most of its grain area (Alm68.6Prp27.8Grs1.9Sps1.6; XMg = 

29), but is weakly zoned to lower XMg (27) and marginally higher Grs (2.4 mol%) within ca. 

50 m of rims adjacent to cordierite (Fig. 3a). Antiperthitic plagioclase, perthitic K-feldspar 

and quartz form a granoblastic polygonal to lobate texture, modified especially adjacent to 
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garnet by the presence of grain-boundary films or rinds (up to 20 micron across) of 

homogeneous K-feldspar between plagioclase and quartz (Fig. 3b, c). Myrmekite is also 

present. Cordierite (<10 modal %) occurs within the quartzo-feldspathic matrix as clusters of 

granoblastic grains (XMg = 67-70) and as intergrowths at the margins of garnet (XMg (Crd) = 

67-74). Sillimanite (1-2 modal %) occurs as rare grains in granoblastic cordierite within the 

quartzo-feldspathic groundmass. Zircon and monazite are abundant accessory phases, as 

described in detail below. 

PHASE EQUILIBRIUM MODELLING OF KNJ GNEISSES 

Conventional garnet-cordierite geothermobarometry P-T estimates obtained by Nandakumar 

and Harley (2000) for sample ED10 are 0.53-0.66 GPa and 800-850 °C. To improve on these 

estimates the bulk rock compositions of KNJ1 and KNJ2 (Supplementary Table 1) have been 

recast into molar proportions and used to calculate equilibrium phase diagrams over the P-T 

range 4-10 kbar and 750-950°C, for bulk H2O contents of 0.5, 1 and 1.5 wt% H2O in each 

rock composition. These bulk H2O contents cover the range from that necessary to ensure the 

presence of melt at minimum temperatures of at least 710ºC, as required by the Ti contents of 

zircon (see below), up to the amount based on loss on ignition. Theriak-domino (de Capitani 

and Petrakakis, 2010; updated domino 03-01-2012 version) was used in concert with 

THERMOCALC (Holland and Powell, 1998) database tcdb55c2d (Holland and Powell, 

2011) to calculate phase diagrams in NCKFMASHT and isolines of garnet (XMg, Xgrs) and 

cordierite (XMg) compositions. Activity-composition relations used for the phases were those 

White et al. (2007) for biotite, garnet and melt, White et al. (2002) for orthopyroxene and 

spinel-magnetite, White et al. (2000) for ilmenite, Holland and Powell (2003) for the 

feldspars, and Holland and Powell (1998) for hydrous cordierite. Whilst it is recognised that 

this dataset and the activity-composition relationships linked with it are now superseded by 

more recent models and do not adequately account for oxidation, this simplified approach is 

considered reasonable for the purposes of this study in which the P-T conditions are only of 

peripheral interest. 

The KNJ2 phase diagram for 0.5 wt% H2O, and calculated assuming no Fe3+, is presented in 

Fig. 4. Varying bulk rock H2O content from 0.5-1.5 wt% for this rock composition has only a 

very minor effect on the positions of the key reactions constraining the stability field of the 

observed garnet + cordierite + ilmenite + 2 Feldspars + quartz ± sillimanite ± biotite 

assemblage. Oxidising even 5% of the measured Fe to Fe3+ stabilises spinel and leads to 

magnetite appearing in most calculated assemblages, which is not seen in the analysed rock. 
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The Grt + Crd + Ilm + 2 Feldspars + Qz ± Sill ± Bt assemblage is constrained to lie at 

minimum P-T conditions of 0.55 GPa and 780°C. Isopleths of grossular (Xgrs < 2 mol%), Xprp 

(garnet cores) of 26-28 and XMg (cordierite) of 66-68, the mineral compositions documented 

from a more leucocratic sub-sample of KLP2 (ED10), further constrain the P-T of garnet 

equilibration to lie in the field defined by the ellipse in Fig. 4 (P = 0.62-0.66 GPa; T = 

840±20°C). The phase diagram calculations also suggest that peak temperatures are unlikely 

to have exceeded 950°C at these pressures as sillimanite is present rather than spinel (Fig. 4), 

and two moderately ternary feldspars occur rather than a single mesoperthitic feldspar (Fig. 

3c, 3d). Similar conclusions can be drawn from analysis of the phase diagrams calculated for 

KNJ1 with 0.5 wt% and 1 wt% H2O, which are presented in Supplementary Figure 1. 

GARNET TRACE ELEMENT CHEMISTRY 

In contrast to the lack of zoning in its major element composition, garnet in ED10 is 

heterogeneous in Y contents (430-130 ppm), and strongly zoned rimwards in terms of MREE 

and HREE (Ybn/Gdn: Fig. 5; also see Supplementary Figure 2). Selected REE abundances 

and ratios are plotted against distance in Figure 6, where distance is measured radially from 

the included zircon grain kz3, which is near the geometric centre of the garnet. Ten of the 

data points also lie on an approximately linear traverse across the garnet through this 

reference point. The data define an inner domain, 3000 m in radius, in which the 

concentration of Y and HREE (Ho to Lu) decrease outwards, and an outer 2000 m wide 

zone in which the concentrations of MREE in particular (Sm, Gd, Tb, Dy) increase. In detail: 

a) Sm, Gd and Tb are near-constant in the inner domain but increase by a factor of 4 

rimwards in the outer domain (e.g. to Smn = 20 and Gdn = 160); 

b) Dy, Y and Ho decrease outwards (by factors of 0.6-0.7) across the inner domain, and then 

increase across the outer domain by a factor of 3; 

c) Er, Tm, Yb and Lu decrease markedly outwards across the inner domain, by factors of 

0.35-0.25, and then are nearly constant or only increase slightly across the outer domain. 

Chondrite-normalised garnet REE patterns highlight this marked change in MREE-HREE 

chemistry (Fig. 7). The inner domain is characterised by HREE at ca. 100-200 times 

chrondrite, a symmetrical but small ‘hump’ centred on Dyn-Hon-Ern, a shoulder defined by 

Gdn<Tbn<Dyn, and very strong Eu depletion (Eu/Eu* = 0.035-0.015) with Eun generally less 

than 1. The combination of the individual MREE-HREE zoning features leads to a consistent 

decrease in Ybn/Gdn from 3.5 to 0.5 across this inner garnet domain (Fig. 6). The outer 



12 
 

domain, in contrast, is typified by near-constant Ybn/Gdn of 0.5, a significant REE ‘hump’ 

from Gdn to Hon that is centred on Dyn, and lowered HREE from Ern to Lun. Relative Eu 

depletion is also extreme (Eu/Eu* = 0.02-0.01), even though Eun is slightly higher than in the 

inner domain. These variations in P and the MREE-HREE are not evident in other trace 

elements: the garnet is unzoned in Zr (20-30 ppm). 

EPMA trace element mapping of the garnet (Supplementary Figure 2) confirms the 

concentric character of the REE zoning, with high Y coupled with P in the core region 

defined from the SIMS analyses. Y is also observed to increase at the outermost rims of the 

garnet adjacent to cordierite. The EPMA maps also demonstrate that zircon inclusions are 

enriched in Er and Y relative to host garnet but similar to garnet in their Dy contents.  

ACCESSORY MINERAL TEXTURES, CHEMISTRY AND GEOCHRONOLOGY 

Monazite  

Monazite Mineral Textures 

Monazite occurs exterior to garnet as individual, inclusion-free, very coarse (300-700 m 

length) subhedral-elongate grains at quartz-feldspar and quartz-cordierite contacts (Mnz2, 

Mnz5, Mnz8, Mnz9) or as more irregular and rounded poikiloblastic to xenoblastic grains 

that partially or wholly enclose 30-150 m diameter multifaceted and equant zircon grains 

(e.g. Mnz10, Mnz11). High Th-Ca monazite (Cheralite) is preserved in one leucosome thin 

section.  

BSE imaging reveals that all monazite grains are characterised by tessellated (Fig. 8: Mnz9) 

to irregular and cuspate-lobate internal domains, with darker and brighter BSE domains 

showing mutually truncating relationships (Fig. 5: Mnz2, Mnz5, Mnz9). ‘Kernels’, circular to 

oval bright-BSE domains, 10-40 m in diameter, occur randomly located within most grains 

(Fig. 8: Mnz2, Mnz5, Mnz8, Mnz11). The tessellated to irregular and ‘kernel’ bearing 

internal zoning is truncated in several grains by bright curviplanar rim domains, 10-50 m in 

width, that parallel grain boundaries (Fig 8: Mnz8, Mnz9, Mnz10). High-resolution BSE 

images of Mnz9, obtained on the Field Emission Gun SEM, reveals complexity in both the 

background ‘tessellated’ domains and the irregular to oval brighter BSE kernels. The darker 

tessellated domains display angular and linear BSE discontinuities and sub-areas suggestive 

of healed fractures, whereas the irregular and oval domains appear to truncate these. 

Micropores are associated with both types of texture. 
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Monazite Mineral Chemistry and EPMA Th-U-Pb Ages  

KNJ monazite describes a wide range in terms of their Th+U+Si and REE chemistry (Fig.9: 

Th+U+Si = 0.3-0.8), though most analyses cluster at the lower Th+U+Si end of this range. 

ThO2 for the whole analytical population varies between 6 and 15 wt%, with most analyses 

being in the range 6-10 wt%. UO2 is generally relatively high, from 0.7 wt% to 1.8 wt%, 

leading to low Th/U. Yttrium (Y) and partial REE patterns obtained using EPMA (Table 2, 

Fig. 10) are characterised by moderate to strong HREE and Y depletions compared with 

LREE (Cen/Yn = 30-150; Dyn = 8000-25000; Fig. 10). Y2O3 (0.2-2.2 wt%) correlates with 

UO2. Full REE analyses have been obtained by SIMS to complement the EPMA analyses 

(Table 3, Fig. 10). The SIMS results (Table 4) are consistent with EPMA and furthermore 

show that the monazite grains have strongly negative Eu anomalies (Eu/Eu* < 0.1) and strong 

Y and HREE depletions (Cen/Yn = 500-2000; Gdn/Ybn = 60-300). 

A sub-group of monazite analyses that plot within the main analytical cluster in terms of total 

REE+Y+P (7.4 in Fig. 9) have high Ce2O3/Y2O3 and ThO2/UO2 reflecting their relatively low 

UO2 (0.44-0.73 wt%) and Y2O3 (0.44-0.55 wt%) contents. These monazite analyses, which 

also record old chemical ages from ca. 1266 Ma to ca. 1793 Ma (Table 2), are located within 

otherwise typical monazite grains with ages in the 570-550 Ma range (e.g. Mnz9) and show 

no evidence of overgrowth by the younger domains. For example, Mnz11 not only records 

several chemical ages from 564 Ma to 598 Ma, but also preserves chemical ages in lower-

UO2 domains from 1793 Ma to 1290 Ma, and 1077 Ma for a high UO2 (>1.9 wt%) analysis 

site (Mnz11: Fig. 8). 

KNJ monazite grains spanning the age range from 618 ± 15 Ma to 507 ± 20 Ma describe a 

trend of increasing Ce2O3/Y2O3 and ThO2/UO2 with decreasing age (Fig. 11), correlated with 

increasing Th+U+Si. Chemical age data for this monazite group are presented in the 

probability density diagram of Fig. 12a. The 49 analyses produce a broad probability density 

distribution with mean peak age at 557.6 ± 6.1 Ma and 2 age spread of ± 20 Ma. The 

density distribution curve is slightly skewed by the presence of a sub-group of younger 

analyses between 507-530 Ma, all of which have been obtained from rims that have high or 

intermediate ThO2 relative to the slightly older domains in this monazite population. When 

the chemical age data are evaluated excluding this younger age sub-group (6 analyses) and 4 
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older outliers (> 600 Ma) the remaining 39 analyses yield a weighted mean age of 559.5 ± 5.4 

Ma (2σ, MSWD = 0.36; probability = 1; Fig. 12b). The higher- ThO2 rim analyses (n = 6) 

yield a weighted mean age of 517 ± 15 Ma (2σ, MSWD = 0.16; probability = 0.98).  

Zircon 

Zircon Textures and Settings 

Zircon is abundant in KNJ leucosome ED10. For example, more than 50 grains with 

diameters of 50-400 m have been observed in one 2.5 cm2 thin section. These zircon grains 

occur in four textural contexts: as individual prismatic to multifaceted, sub-elongate to equant 

grains located in the plagioclase + perthitic K-feldspar + quartz leucosome groundmass; as 

clusters of grains of similar form and size, partially enclosed by coarse irregularly-zoned 

monazite; included within granoblastic cordierite within the leucosome; and as equant grains 

included in coarse porphyroblastic garnet (e.g. z3, z4) or on garnet-quartz grain boundaries.  

CL imaging reveals all zircon grains to have generally weak oscillatory (Fig. 13: z1, z3, z5, 

z10), sector and sector-planar zoning, with the latter being dominant in most grains (Fig. 13: 

zz3, z4, z13, z14). Bright CL, 10 m thick partial rinds or lobate domains occur on some 

grains (Fig. 13: z5, z11), but overall the extent of modification of the planar and weak 

oscillatory zoning in the zircon is minor. The shared internal features of these zircon grains 

irrespective of their textural settings suggest that they form a single population, grown prior 

to or contemporaneously with enclosing garnet, cordierite and monazite.  

Zircon Chemistry 

The zircon grains are relatively homogeneous (Table 4). HfO2 is 1.48 ± 0.05 wt% and Ti 

contents are 6.0 ± 1.2 ppm. These Ti contents indicate minimum temperatures of 

crystallisation of 713 ± 19°C (n = 5) based on the Ferry and Watson (2007) thermometer. U 

(1250 ± 300 ppm, 2) is uniformly high, and Th (22 ± 10 ppm, 2) low, yielding consistent 

but extremely low Th/U (0.018 ± 0.006, 2).  

Zircon REE chemistry is presented normalised against chondrite values of Anders and 

Grevasse (1989) in Fig. 14. The REE patterns are characterised by very strong negative Eu 

anomalies (Eu/Eu* = 0.01-0.05) and negligible to weakly positive Ce (Ce/Ce* = 0.6-2.2) 

anomalies. HREE are flat (Ybn/Tbn = 1.0 ± 0.05) with a ‘shoulder’ dropping to lower Gdn so 

that Ybn/Gdn is >1 (2.0 ± 0.3). Dyn is generally in the range 450 ± 120. The low Yb coupled 

with the high U contents result in high U/Yb (20.7 ± 3.7, 1) that increases to 29 ± 5 when U 
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is back-corrected to the age of zircon crystallisation (1.92 Ga, see below). Coupled with the 

low Th/U, this chemistry is unique for zircon reported from the Trivandrum Block (cf. 

Shabeer et al., 2005; Kröner et al, 2012, 2015; Harley and Nandakumar, 2014; Taylor et al., 

2014; Whitehouse et al., 2014). 

Zircon U-Pb zircon geochronology 

Zircon U-Pb analyses have been carried out on spots adjacent to those sites analysed for REE. 

The U-Pb isotopic results are presented in Table 5 and the Tera-Wasserburg inverse 

Concordia diagram of Fig. 15. All 22 zircon analyses are strongly discordant, defining a 

single discordia with model 1 intercepts at 1923 ± 40 Ma and 528 ± 18 Ma (95% conf.; 

MSWD = 1.3, probability of fit 0.19). When 2 analyses with relatively high common Pb (f206 

> 0.14%) are excluded the remaining 20 analyses yield essentially identical upper and lower 

intercepts of 1918 ± 51 Ma and 525 ± 23 Ma (95% conf., MSWD = 1.4, probability of fit 

0.12). 

DISCUSSION 

Palaeoproterozoic High Grade Metamorphism in the Trivandrum Block 

The ED10 leucosome at Kanjampara preserves unequivocal evidence for anatexis and zircon 

crystallisation at ca. 1.92 Ga, at minimum temperatures of 715°C required by the Ti contents 

of the zircon. The zircon grains are chemically distinct from igneous protolith zircon widely 

reported from the TB and NB (e.g. Whitehouse et al., 2014; Taylor et al., 2014; Kröner et al., 

2012, 2015; Johnson et al., 2015; Clark et al., 2015) and hence do not share the same origin. 

The ED10 zircon grains have high U and low Th and hence distinctively low Th/U, preserve 

flat HREE patterns, and have high U/Yb (24-34) compared to all other Palaeoproterozoic 

zircon recorded from the TB and NB. These chemical features are compatible with zircon 

crystallisation in leucosome formed through the anatexis of garnet-bearing metasediment, and 

consistent with the presence of quartz, feldspars and, notably, sillimanite as inclusions in the 

zircon grains. The Palaeoproterozoic zircon age confirms the chemical age spectra obtained 

from monazite that on the basis of textural relationships formed along with or after the zircon. 

These chemically heterogeneous and variably zoned monazite grains locally preserve EPMA 

ages of up to ca. 1.8 Ga within otherwise ‘younger’ or reset domains (570-560 Ma) and hence 

initially formed in the Palaeoproterozoic HT anatectic episode. 

Examination of previous monazite and zircon studies from the Trivandrum Block reveals 

potential evidence for a metamorphic event at or near 1.92 Ga. Braun et al. (1998) obtained 
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EPMA ages of ca. 1.97 Ga for cores of monazite grains and interpreted these to provide a 

minimum age for first monazite growth or complete homogenization. Several ca. 1.9 Ga U–

Pb electron microprobe monazite ages reported by Santosh et al. (2003, 2005, 2006) also 

would be consistent with the KNJ data if re-interpreted as reflecting metamorphism at that 

time. Shabeer et al. (2005) reported ca. 1.95 Ga high-U, low Th/U zircon in their sample 

KPS30/1 that could be analogous to the zircon documented here from sample ED10.  

Bartlett et al. (1998) also noted the existence of a possible Palaeoproterozic metamorphic 

event, interpreting a zircon Pb-evaporation plateau age of 1802 ± 16 Ma to indicate new 

zircon growth under amphibolite facies conditions. This age is considerably younger than 

both the age of anatexis at Kanjampara and of the 1.89-1.85 Ga orthogneisses recently 

documented by Kröner et al. (2012) and Whitehouse et al. (2014) in the TB, and is not 

recorded in any of the gneisses examined in this and other recent studies. 

The 1.92 Ga HT anatectic event recorded at Kanjampara is also distinct in age from the 

intrusive ages of older granitic orthogneisses and charnockites from the TB and NB (Kröner 

et al., 2015; Johnson et al., 2015), which as noted above are 2.1 Ga, 2.07 Ga and 2.0 Ga. 

Kröner et al. (2012) and Whitehouse et al. (2014) have also reported igneous protolith ages of 

1.89 and 1.85 Ga from localities in the central TB to the north of Kanjampara. These 

granitoid intrusions are arguably younger than the high-grade metamorphic event recorded by 

the zircon in KNJ.  

The age data of Kröner et al. (2015) imply that the metasediments that are interleaved and co-

deformed with the granitic gneisses of the Trivandrum Block had to have been deposited 

before 1765 Ma (the age of a moderately-deformed garnet-bearing K-feldspar blastic granite 

gneiss) and most likely prior to 2.0 Ga, the age obtained from an unfoliated granodiorite at 

Kottavattom and from two well-foliated garnetiferous leucogneisses. A 2.1 Ga granitic 

leucosome formed in a metasedimentary enclave within the 2.07 Ga charnockitic gneiss at 

Kottaram in the Nagercoil Block provides an even older potential minimum age for the 

deposition of sedimentary precursors to the paragneiss, as well as implying high-grade 

metamorphism of at least some of the metasediments at or before 2.0-2.1 Ga (Kröner et al., 

2015, Johnson et al., 2015). The zircon chemical and age data from Kanjampara record no 

evidence for this older event but instead demonstrate a high-T event at 1.92 Ga that, if present 

on a regional scale, might be recorded by accessory minerals in other metasedimentary 

gneisses and in the 2.1-2.0 Ga orthogneisses from both the Trivandrum Block and Nagercoil 

Block. Demonstration of a 1.92 Ga overprint on the orthogneisses would confirm that the 
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orthogneiss precursors were either basement to the metasedimentary gneiss precursors or 

intrusive into them, and also the regional extent of the event, whereas the absence of such an 

overprint might indicate that, in general, tectonic interleaving of earlier-formed 

metasediments and orthogneisses occurred after 1.92 Ga. 

Age and duration of the Neoproterozoic-Cambrian Tectonothermal Episode 

The Palaeoproterozoic high-grade event documented from Kanjampara and sporadically 

preserved in the TB was extensively and thoroughly overprinted at ca. 580-520 Ma by the 

well-documented HT-UHT tectonothermal episodes recorded throughout the TB and adjacent 

blocks in southern India (Santosh et al., 2003, 2006, 2009; Braun and Kriegsman, 2003; 

Braun, 2006; Cenki and Kriesgman, 2005; Collins et al., 2007, 2014; Sato et al., 2011; Harley 

and Nandakumar, 2014; Taylor et al., 2014, 2015; Clark et al., 2015; Johnson et al., 2015).  

The principal population of chemically heterogeneous and variably zoned monazite in the 

ED10 leucosome at Kanjampara recrystallized at 560 ± 6 Ma. Whilst similar in age to the 

peak metamorphic monazite reported by Braun et al. (1998), the timing of this monazite 

reconstitution at Kanjampara is some 10-15 Ma later than monazite crystallisation at 

Kottavattom (Taylor et al., 2014) and 15-20 million years earlier than the 535 ± 6 Ma timing 

of monazite formation at Kulappara (Harley and Nandakumar, 2014). This confirms the long-

lived character of the Neoproterozoic-Cambrian HT-UHT metamorphism in the Trivandrum 

Block, with monazite development or recrystallization occurring at various times from 585 ± 

10 Ma to 535 ± 10 Ma, depending on locality, lithology and structural context of the 

monazite-bearing sample. A similar range in monazite ages has been reported from the 

adjacent Nagercoil Block (Johnson et al., 2015). 

Late-stage higher-ThO2 cuspate rim domains on monazite grains at Kanjampara (517 ± 15 

Ma), attributed to coupled dissolution / re-precipitation (Seydoux-Guillaume et al., 2002), 

were produced at a similar time to that recorded in other Trivandrum Block samples (e.g. 

Santosh et al., 2006; Collins et al., 2007; Harley and Nandakumar, 2014; Clark et al., 2014; 

Taylor et al., 2014).Whilst the lower age intercept obtained from the zircon discordia (528 ± 

18 Ma) is consistent with the age of late-stage monazite re-equilibration, the extent of 

extrapolation required from the group of discordant zircon grains in ED10 means that this 

lower intercept age should be treated with caution in the absence of concordant new zircon 

rims or grain of similar age. Nevertheless, the lower intercept age is similar to those reported 

in other recent studies of zircon from leucogranites from the TB (Whitehouse et al., 2014; 

Kröner et al., 2012, 2015) and to the ages of concordant metamorphic zircon grains reported 
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by Shabeer et al. (2005) (ca. 530-525 Ma), documented in garnet-biotite gneiss from 

Kottavattom (Taylor et al., 2014: 523 ± 7 Ma), and recorded from a number of gneisses from 

the NB (Johnson et al., 2015). 

Granulite Facies Metamorphic Conditions: Neoproterozoic or Palaeoproterozoic? 

Conditions of the granulite facies metamorphism and partial melting recorded in the KLP 

gneisses are constrained to be 0.6-0.65 GPa and >820-860ºC based on thermodynamic phase 

diagram modelling, broadly consistent with the results of regional thermobarometry in the 

central TB (Chacko et al., 1987; Nandakumar and Harley, 2000) and detailed P-T studies 

from nearby localities (e.g. Harley and Nandakumar, 2014). These conditions lie at the lower 

P-T end of the range of UHT-HT conditions inferred by Morimoto et al. (2004) and Tadokoro 

et al. (2008) for the area, but do not preclude higher temperatures being present prior to melt 

crystallisation in the migmatites. However, the evidence preserved in the ED10 zircon for 

earlier, Palaeoproterozoic, anatexis under conditions in which sillimanite (included in zircon) 

and garnet (zircon flat HREE pattern) were present complicates the interpretation of the 

phase diagram modelling. The highly discordant zircon isotopic data coupled with the largely 

reset monazite ages is indicative of polymetamorphism (e.g. Schaltegger et al., 1999), and 

whilst the major element homogenisation in garnet suggests the retrieved P-T conditions 

reflect the 570-530 Ma event, strong REE zoning in the garnet indicates that this assumption 

requires further consideration. 

Garnet REE zoning 

The style of zoning observed in the inner (core) garnet domain can be interpreted as simple 

growth zoning governed by Rayleigh fractionation, in which the heaviest of the REE are 

partitioned most strongly into the earliest garnet and so decrease in concentration outwards 

(the HREE from Dy through to Lu all show this decrease). However, the increases in Sm, Gd, 

Tb, Dy, Ho and (to a lesser extent) Er and Lu, and resultant migration of the MREE-HREE 

‘hump’ in the garnet REE pattern for the outer garnet domain is not consistent with continued 

growth of garnet from the same chemical environment as the inner domain i.e. it is not 

consistent with simple growth zoning. The enhanced MREE in particular either imply garnet 

growth accompanied by the breakdown of a competitor mineral into which these REE are 

preferentially partitioned (e.g. monazite), or renewed garnet growth in a chemical 

environment that had become enriched in MREE by other means, such as the introduction of 

melt (Spear and Kohn, 1996). This requires a two-stage formation history with intragranular 

diffusion within garnet causing the REE compositional gradient between the core and 
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outer/rim domains. The critical question then is: does the first stage correspond to the time of 

the crystallisation of the flat-HREE zircon (i.e. at 1.92 Ga) or is all garnet growth post-zircon 

and hence most likely related to the Neoproterozoic-Cambrian event?  This question can be 

addressed through an examination of the distribution of MREE-HREE between garnet and 

included zircon, which occurs in both the core and outer garnet compositional domains (Fig. 

5). 

The MREE-HREE composition of zircon is uniform, whether present in core garnet, outer 

domain garnet or in the matrix exterior to garnet (Fig. 14). Hence, we have used this zircon 

composition to predict the MREE-HREE composition of the garnet with which it would be in 

equilibrium at 900ºC according to the 0.5 GPa experimental data of Taylor et al. (2015) for 

Fe-Mg garnet and 2 GPa experimental data of Rubatto and Hermann (2007) for Ca-bearing 

Fe-Mg garnet. The REE pattern of this predicted garnet is compared with those of the core 

and outer domain garnet compositions in Fig. 16. 

The core garnet MREE-HREE (especially MREE) are strongly depleted relative to zircon for 

the experimental calibration of Taylor et al. (2015). The garnet rims approach or attain 

MREE equilibrium (for Gd, Tb, Dy), and based on the Rubatto and Hermann (2007) model 

these rims could be argued, in the absence of the textural observations on zircon location, to 

be in equilibrium with zircon. Critically, for either experimental calibration the predicted 

model garnet has much higher Eu than the observed garnet, whether core or rim: DEu(Zrc/Grt) 

is anomalously high (4.7) in comparison to the experimental values.  

The zircon-garnet REE distribution analysis indicates that the core garnet which encloses 

Palaeoproterozoic zircon in Kanjampara sample ED10 is not in REE equilibrium with that 

zircon. The garnet grew from a chemical environment relatively depleted in most MREE-

HREE and especially in Eu compared with the zircon. The relative depletion in Eu suggests 

that significantly more feldspar had crystallised in the bulk composition from which the 

garnet cores and outer domains formed than that accessed by the 1.92 Ga zircon during its 

growth. 

Based on this reasoning we conclude that the zoned garnet formed in the Neoproterozoic-

Cambrian tectonothermal event subsequent to the crystallisation of most of the feldspar in the 

rock, in a chemical environment replenished in MREE during the time of garnet growth. 

Dissolution-reprecipitation of monazite (e.g. Buick et al., 2010) at or after ca. 530 Ma may 

have facilitated the increase in MREE observed in garnet rims compared with cores, as the 
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younger Th-rich monazite rinds and cuspate rims are lower in REE than most of the main 

monazite phase (Fig. 9). Although the garnet has Zr contents (25-30 ppm) that are consistent 

with zirconium saturation at 800-900ºC (Kelsey et al., 2008b; Kelsey and Powell, 2011), 

mass balance calculations show that the saturation of a 1 cm diameter garnet in Zr (to 30 

ppm) only requires the dissolution of one 35 micron diameter zircon, or resorption of only 1 

micron of a rim of a zircon initially 100 microns in diameter. Hence, the breakdown of trivial 

amounts of 1.92 Ga zircon at 565-525 Ma could account for the Zr present in the garnet. The 

final garnet-bearing metamorphic mineral assemblage in ED10 is therefore attributed to the 

Neoproterozoic-Cambrian granulite facies tectonothermal event recorded throughout the 

Trivandrum Block and the Palaeoproterozoic metamorphic record, essentially obliterated, is 

only hinted at by the inclusions (Sil, Bt, Qz-feldspar, apatite) preserved in the 1.92 Ga 

anatectic zircon that formed at > 715ºC. 

CONCLUSIONS 

In-situ zircon U-Pb isotopic ages obtained on a garnet + cordierite bearing leucosome in 

migmatitic paragneiss at Kanjampara in the Trivandrum Block, demonstrate zircon 

crystallisation from melt at 1.92 ± 0.04 Ga. The unique trace element chemistry of the zircon, 

including high U/Yb, low Th/U, and flat MREE-HREE patterns with pronounced negative Eu 

anomalies, coupled with the presence of inclusions of sillimanite, apatite, quartz, feldspar and 

rare biotite in the zircon, confirms its formation as a result of anatexis associated with a high-

T metamorphism at 1.92 Ga. This conclusion is supported by the local preservation of 

Palaeoproterozoic chemical age domains (<1.8 Ga) within monazite grains that enclose and 

are texturally associated with the zircon grains. 

The main Neoproterozoic-Cambrian (570-520 Ma) granulite facies tectonism at Kanjampara 

involved the formation of garnet + cordierite -bearing assemblages in the presence of 

significant partial melt at 0.65 GPa and >820-860ºC, consistent with P-T estimates obtained 

for this tectonothermal event from nearby localities in the Trivandrum Block (Nandakumar 

and Harley, 2000; Harley and Nandakumar, 2014). The strongly REE-P zoned garnet present 

in the Kanjampara leucosome, which is demonstrated to not be in HREE or Eu equilibrium 

with the 1.92 Ga zircon, formed as a result of anatexis and melt interaction during this 

Neoproterozoic-Cambrian tectonothermal event. Th-U-Pb chemical age data indicates that 

monazite was either formed or extensively recrystallized at during this anatexis at 565 ± 6 

Ma, undergoing further modification to form high-Th cuspate rims at 517 ± 15 Ma. The age 

of the final monazite chemical modification is equivalent to the lower intercept age of 528 ± 
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18 Ma for extensive Pb-loss from the highly discordant but otherwise well-preserved 

Palaeoproterozoic (1.92 Ga) zircon.  

The growth or recrystallisation of monazite at ca. 565 Ma and its further modification at ca. 

520 Ma indicates that the high-T metamorphism in the Pan-African was long-lived, with a 

duration of at least 45 Myr. This adds further weight to recent proposals, based on zircon-

monazite isotopic studies from other localities in the Trivandrum Block, that the region 

formed the mid- to deep-crust of a long-lived collisional hot orogenic belt that welded 

Gondwana from ca. 580-510 Ma. (e.g. Jamieson et al., 2004; Vanderhaeghe, 2009; Jamieson 

and Beaumont, 2011; Clark et al., 2011). 

Our new age-event results from Kanjampara confirm that at least some of the 

metasedimentary paragneisses in the Trivandrum Block are polymetamorphic, initially 

metamorphosed in the Palaeoproterozoic in an event older than the 1.89-1.85 Ga granitic 

orthogneisses recognised from the region. The nature of the relationship between these >1.92 

Ga paragneisses and the 2.0-2.1 Ga granitic and charnockitic orthogneisses of the Trivandrum 

and Nagercoil Blocks, in particular whether they share the same Palaeoproterozoic history or 

were interleaved after 1.92 Ga, requires further investigation focussed on the presence or 

absence of the isotopic imprint of this event in both rock suites throughout the region.  
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Figure captions  

Fig. 1: Simplified geological map of the Kerala Khondalite Belt (KKB) region, southern 

India, showing the location of the Kanjampara quarry (KNJ) within the Trivandrum 

Block (TB). The Kulappara site studied in detail by Harley and Nandakumar (2014) is 

also shown. Inset is the location of the KKB region in relation to other domains of 

south India. Abbreviations are: BSZ – Bhavani Shear Zone; K-CHM – Kodiakanal-

Cardamom Hills and Massif; NH – Nilgiri Hills; PCSZ – Palghat-Cauvery Shear Zone. 

Key to shaded areas in inset map: 1 – Archaean Dharwar Craton north of 

orthopyroxene-in isograd; 2 – Archaean charnockite massifs; 3 – Madurai Block and 

other dominantly Proterozoic crust; 4 – Kerala Khondalite Belt (including Trivandrum 

and Nagercoil blocks); 5 – recent sediments. 

Fig. 2: 

a)  Kanjampara Quarry (KNJ): Field view of a 20 cm width garnet-bearing leucogranite / 

leucogneiss sheet (L) within Grt + Sil + Crd migmatitic gneiss (M). The near-vertical 

fabric is defined by gneissic layering comprising Grt + Sil + Crd + Ilm mesosomes, 1-2 

cm width concordant to sub-concordant leucosome veins and lenses, and 1 cm width 

cordierite horizons. 12 cm length pen for scale. 

b)  Kanjampara Quarry (KNJ): Field view the margin of one Grt-Crd bearing leucogranitic 

gneiss (L) showing coarse subhedral porphyrobalsts and cumuloblasts of garnet and 

schlieren or lenses of cordierite within the leucogneiss, and braidly alternating garnet- 

and cordierite-rich layering in the adjacent mesosome (M). 12 cm length pen for scale. 

Fig. 3. Photomicrographs and back-scattered electron (BSE) images of typical mineral 

textures in KLP leucogranitic sample ED10. 

a) Subhedral garnet (Grt) containing an inclusion of zircon (Zrc), embayed and resorbed 

by cordierite (Crd). This cordierite also partially encloses the garnet. Numbers on the 

garnet (e.g. 27) and cordierite (e.g. 67) refer to their measured XMg 

(100*(Mg/(Mg+Fe)). Crossed polars. 

b) Euhedral twinned cordierite (Crd) within the quartzo-feldspathic groundmass remote 

from the garnet porphyroblast of (a). The cordierite contains inclusions of sillimanite 

(Sill), quartz (Qz) and plagioclase. Crossed polars. 
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c) Leocosome texture involving Qz and perthitic K-feldspar (Pth), with myrmekite 

(Myr) appearing to replace the pethitic K-feldspar. BSE image. 

d) Typical leucosome texture adjacent to the garnet porphyroblast in ED10. Antiperthitic 

plagioclase (Plag) and interstitial quartz are separated by grain boundary rinds of K-

feldspar (Kfs) that lacks perthitic lamellae. BSE image. 

e) Zircon and monazite hosted in feldspars (Plagioclase / Antiperthite (Apth) and K-

feldspar) in the leucosome. Monazite appears to overgrow or envelope the zircon. 

Crossed polars. 

f) Leucosome texture of plagioclase and minor quartz (Qz) with isolated subhedral 

zircon (Zrc), and euhedral monazite (Mnz). Crossed polars. 

Fig. 4. Calculated Pressure-Temperature phase diagram (pseudosection) for migmatitic 

mesosome sample KNJ2 with 0.5 wt% H2O in the system NCKFMASHTO, with all Fe 

assumed to be in the divalent state. Calculated using theriak-domino (de Capitanti and 

Petrakakis (2010) updated software version 03-01-2012, applying the THERMOCALC 

(Holland and Powell, 1998) dataset version tcdb55c2d. The wt% oxide bulk rock 

composition of KNJ2, recast in terms of cations given at the top of the diagram, is: SiO2 

61.94, TiO2 0.73, Al2O3 18.67, Fe2O3 7.43, MnO 0.08, MgO 2.12, CaO 1.14, Na2O 

2.39, K2O 3.53, P2O5 0.07 (sum = 98.11 wt%).  Calculated mineral compositional 

isopleths are as follows: green dashed lines - mol XGrs in garnet; red dashed lines - XMg 

in garnet; blue short dashed lines -  XMg in cordierite. The elliptical field denotes the 

minimum P-T conditions required by the mineral assemblage in ED10 (Grt + Crd + Sil 

+ Ilm + Plag + Kfs + Qz + L) based on the measured core garnet and cordierite 

compositions reported by Nandakumar and Harley (2000), modelled as a closed system. 

Fig. 5. Spatial variations in the trace element compositional features of the large garnet 

porphyroblast in ED10. (a) Line tracing of garnet texture and petrographic context 

based on merged photomicrographs and BSE images. Garnet (pink) is partially 

embayed and surrounded by cordierite, as shown in more detail in Fig. 3(a) [position 

shown by the smaller outlined box]. Note distribution of zircon grains within and 

outside of the garnet. The dark blue numbers on the garnet are its chondrite-normalised 

Yb(n)/Gd(n) ratio at the analysed point. The dashed circle shows the limit of the higher 

Yb(n)/Gd(n) core domain (>1.5).  
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Fig. 6: REE zoning in KNJ/ED10 garnet, showing changes in selected REE (normalised) and 

REE (normalised) ratios at distances away from a reference point adjacent to zircon Z3 

(Fig. 5a). See text for discussion. 

Fig. 7. REE patterns for (a) garnet core and (b) rims based on the analysis positions shown in 

Fig 5a. Chondrite values from Anders and Grevasse (1989). Note consistent position of 

Eu at or below 1 times chondrite, and marked increases in Sm, Gd, Tb and Dy, and 

decreases in Tm and Yb in rims compared with garnet cores. 

Fig. 8. Back scattered electron (BSE) images of monazite grains in ED10. Scales shown by 

horizontal bars (in microns). Monazite labels are as used in the text; analyses for each 

are provided in Table 2 and. Three-digit labels (e.g. 539) are the Th-U-Pb chemical age 

for each analysis point (typical errors ± 13-18 Ma). Zircon grains shown in c) are 

superimposed from CL images of the same area. Image f) is a detail of the area of 

monazite Mnz9 shown by the outlined box in e), showing presence of micropores as 

well as ovoid and irregular areas of high- and low-BSE response. 

Fig. 9: Chemical systematics of ED10 monazite. Th+U+Si versus REE+Y+P monazite 

compositional diagram illustrating the extents of covariation in monazite chemistry in 

terms of Th+U compared with REE+Y, and how these relate to the principal Brabantite 

(Ca(Th,U)REE-2) and Huttonite ((Th,U)SiREE-1P-1) substitutions. Dark filled circles are 

analyses carried out on the SX100 electron microprobe; filled diamonds are analyses 

carried out earlier on the Camebax microprobe. Light shaded field shows the range in 

chemistry of monazite from Kulappara (Harley and Nandakumar, 2014) for 

comparison. Representative analysis points are annotated with their Th-U-Pb chemical 

age; there is no clear trend of the bulk Th vs REE chemistry with chemical age.   

Fig. 10: Chondrite-normalised REE diagram showing the compositions of ED10 monazite 

grains. Grey shaded field depicts the REE obtained by EPMA analysis using both the 

SX100 and Camebax electron microprobes and with Y plotted as a proxy for Ho. The 

blue points show the normalised REE obtained for monazite using SIMS, which can 

allow determination of both Eu and the HREE. Note the marked negative Eu anomaly 

and the consistent drop-off in HREE in the monazite. Dispersion to low Tm and Yb in 

the SIMS analyses reflects uncertainties in corrections for isobaric interferences of 

MREE-oxides on the HREE. Chondrite values from Anders and Grevasse (1989). 
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Fig. 11: Relations between monazite chemistry and age for the main Neoproterozoic age 

group in ED10, plotted as oxide ratios Ce2O3/Y2O3 and ThO2/UO2 versus chemical age. 

The chemical ratios for monazite domains with chemical ages > 1250 Ma are shown by 

the shaded boxes.  The two oxide ratios are broadly correlated, with younger (< 540 

Ma) monazite domains having slightly elevated Ce2O3/Y2O3 and ThO2/UO2 compared 

with most 610-540 Ma domains. 

Fig. 12: (a) Relative Probability diagram for all ED10 monazite analyses in the main age 

population of Fig. 11, based on analyses from both the SX100 and Camebax electron 

microprobes. The mean age obtained is 558.3 Ma with a standard error of the mean of 

6.0 Ma based on 49 analyses. (b) Weighted age distribution diagram for ED10 main age 

population monazite analyses excluding high-Th (younger rinds) and older (>590 Ma) 

outliers from the full group shown in (a) (39 analyses). Shaded band represents the 

best-fit weighted age and its associated error (2 confidence; 559.5 ± 5.4 Ma). Age 

errors on the individual analyses are shown by the vertical bars. Both plots in (a) and 

(b) calculated using Ludwig (2003). 

Fig. 13: CL images of ED10 zircon grains referred to in the text and listed in Table 4, with 

scales given by the horizontal scale bars. Bold numbers in white are the 206Pb/238U ages 

determined at the underlying points; numbers in brackets beneath these are the % 

concordance. Yellow numbers -Ybn/Gdn; blue numbers - U/Yb ratio. The image for 

zircon Z6 is a composite CL and BSE image with the BSE features of monazite 

superimposed on the CL features of the zircon grains it partially encloses along with 

ilmenite. 

Fig. 14: REE patterns for ED10 zircon. Note the strong depletions in Eu (Eu/Eu* << 1) and 

low LREE with no Ce anomaly in all but two analyses. The two analyses with higher 

LREE and Eu are contaminated, based on elevated Ba and Ca (Table 4). All zircon 

grains have similar flat HREE from Dy to Lu. Chondrite values for normalisation are 

from Anders and Grevasse (1989). 

Fig. 15: U-Pb geochronological data for ED10 zircon, presented as 204Pb-corrected Tera-

Wasserburg Concordia diagrams (207Pb/206Pb versus 238U/206Pb), with data ellipses 

corresponding to 1 sigma analytical uncertainties. The strongly discordant data array 

define a well-fitted discordia with an upper intercept age of 1923 ± 40 Ma and lower 
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intercept extrapolated to 528 ± 18 Ma, using all analyses. Exclusion of two analyses 

with slightly higher 204Pb (yellow ellipses) does not affect the resultant age estimates.  

Fig 16: Observed KNJ-ED10 REE patterns for garnet core (pink shaded field ) and rim / outer 

domain (yellow shaded field) compared with modelled garnet REE compositions 

predicted from the measured ED10 zircon REE patterns using experimentally 

determined zircon-garnet REE distribution data, DREE(Zrc/Grt), from Taylor et al. 

(2015) [red symbols] and  Rubatto and Hermann (2007) [blue symbols]. Note that both 

garnet types are depleted in MREE-HREE relative to that predicted from the Taylor et 

al. (2015) model at 900-1000ºC, whereas observed garnet rims match the predictions of 

the Rubatto and Hermann (2007) model for MREE-HREE at 900ºC but are depleted on 

Eu in all cases. See text for discussion. 

Supplementary Figure 1: Calculated Pressure-Temperature phase diagrams (pseudosections) 

for migmatitic leucosome sample KNJ1 with 0.5 and 1.0 wt% H2O, in the system 

NCKFMASHTO, with the simplification that all Fe is assumed to be in the divalent 

state. Calculated using theriak-domino (de Capitanti and Petrakakis (2010) updated 

software version 03-01-2012, applying the THERMOCALC (Holland and Powell, 

1998) dataset version tcdb55c2d. The wt% oxide bulk rock composition of KNJ1, 

recast in terms of cations given at the top of the diagram, is: SiO2 74.45, TiO2 0.02, 

Al2O3 14.80, Fe2O3 0.59, MnO 0.01, MgO 0.14, CaO 0.79, Na2O 2.84, K2O 5.76, P2O5 

0.10 (sum = 99.49 wt%).  Calculated mineral compositional isopleths are as follows: 

green dashed lines - mol XGrs in garnet; red dashed lines - XMg in garnet; blue short 

dashed lines - XMg in cordierite. The yellow elliptical field denotes the P-T conditions 

required by the mineral assemblage in KNJ2 (ED10) as shown in Figure 4 of the paper. 

Supplementary Figure 2: (a) Line tracing of garnet texture and petrographic context based on 

merged photomicrographs and BSE images, as per Figure 5. Garnet (pink) is partially 

embayed and surrounded by cordierite. (b) Selected elemental X-ray maps [position 

shown by the larger outlined box in (a)] of trace elements P, Y, Dy and Er in garnet and 

adjacent phases (see text for analytical details). Note differences in P, Y and Er 

contents of zircon and garnet, and the similarity in Dy for each phase. P in garnet is 

slightly higher in the core than the rim, whilst Y in garnet increases in a thin rim area 

adjacent to Crd and Qz. 

 


