71 research outputs found

    Sensor Development for Single-Photon Thermoelectric Detectors

    Get PDF
    As we reported earlier [1], thermoelectric detectors can be competitive as nondispersive energy resolving focal-plane instruments in X-ray/UV spectrum. The first generations of prototype devices demonstrated the viability of detector design and provided good agreement between theoretical expectations and experimental data. These devices exploited sensors made of gold with a small fraction of iron impurity. To get the projected high resolution one needs another type of material, namely, lanthanum-cerium hexaborides. We report on the first experimental tests of the feasibility of lanthanum-cerium films as sensor materials. Progress with thin films of these materials argues for the success of these thermoelectric detectors

    Voltage Responses to Optical Pulses of Unbiased Normal and Superconducting Samples

    Get PDF
    The direct transformation of the energy of an incident high-energy photon into a measurable potential difference within an absorbing metal is investigated. Experimental evidence is presented that the effect arises from the inherent energy dependence of the electronic density of states, rather than from a simple temperature excursion. The similarities between the results on Al and YBa2Cu3O7 samples indicate that the effect is universal in nature. We assert it may be used as the basis of a fast, energy resolving, individual photon detector for the ultraviolet radiation and x-rays

    Ancient and Modern Genomes Unravel the Evolutionary History of the Rhinoceros Family

    Full text link
    Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines. © 2021 The Authors.The authors acknowledge support from the Science for Life Laboratory, the Garvan Institute of Medical Research, the Knut and Alice Wallenberg Foundation, and the National Genomics Infrastructure funded by the Swedish Research Council and Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. We thank the Natural History Museum at the University of Oslo for providing the Javan rhinoceros sample. We thank the Museum of the Institute of Plant and Animal Ecology (UB RAS, Ekaterinburg) for providing the sample of Siberian unicorn. M.T.P.G. was supported by European Research Council (ERC) Consolidator grant 681396 (Extinction Genomics). E.D.L. was supported by Independent Research Fund Denmark grant 8021-00218B . A.C. was supported by an Australian Research Council Laureate Fellowship ( FL140100260 ). T.M.B. is supported by funding from the ERC under the European Union’s Horizon 2020 research and innovation program (grant agreement 864203 ), grant BFU2017-86471-P ( MINECO /FEDER, UE), “Unidad de Excelencia María de Maeztu” funded by the AEI ( CEX2018-000792-M ), Howard Hughes International Early Career, and Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya ( GRC 2017 SGR 880 ). L.D. was supported by the Swedish Research Council ( 2017-04647 ) and Formas ( 2018-01640 ). We thank Dmitry Bogdanov and Roger Hall for giving us permission to use their rhinoceros artwork

    Catching Element Formation In The Act ; The Case for a New MeV Gamma-Ray Mission: Radionuclide Astronomy in the 2020s

    Get PDF
    High Energy Astrophysic
    corecore