59 research outputs found

    Coupling of Surface and Volume Dipole Oscillations in C-60 Molecules

    Full text link
    We first give a short review of the ``local-current approximation'' (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C60_{60} molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode (``surface plasmon'') with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a ``volume plasmon''.Comment: LaTeX, 12 pages, 5 figures (8 *.eps files); Contribution to XIV-th Nuclear Physics Workshop at Kazimierz Dolny, Poland, Sept. 26-29, 200

    Excitation of soft dipole modes in electron scattering

    Get PDF
    The excitation of soft dipole modes in light nuclei via inelastic electron scattering is investigated. I show that, under the proposed conditions of the forthcoming electron-ion colliders, the scattering cross sections have a direct relation to the scattering by real photons. The advantages of electron scattering over other electromagnetic probes is explored. The response functions for direct breakup are studied with few-body models. The dependence upon final state interactions is discussed. A comparison between direct breakup and collective models is performed. The results of this investigation are important for the planned electron-ion colliders at the GSI and RIKEN facilities.Comment: 23 pages, 8 figures, to be published in Physical Review

    Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields

    Get PDF
    We study heavy-ion inelastic scattering processes in neutron-rich nuclei including the full response to the different multipolarities. Among these we focus in particular on the excitation of low-lying dipole states commonly associated to the pygmy dipole resonance. The multipole response is described within the Hartree-Fock plus RPA formalism with Skyrme interaction. We show how the combined information from reactions processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions can provide a clue to reveal the characteristic features of these states. We have performed calculation for the excitation of 132Sn generated in the reactions with 4He, 40Ca, and 48Ca at several incident energies, as well as for the system 17O +208Pb. Our results suggest that the investigation of the PDR states can be better carried out at low incident energies (below 50 MeV/nucleon). In fact, at these energies the PDR peak is relatively stronger than the giant dipole resonance (GDR) one and the narrow width of the low-lying quadrupole and octupole states should not blur its presence.Ministerio de Ciencia e Innovación (España) y FEDER FPA2009-07653 FIS2008-04189Programa Consolider-Ingenio 2010 (España) CSD2007-00042Junta de Andalucía P07-FQM-02894 FQM16

    Chaotic scattering on surfaces and collisional damping of collective modes

    Get PDF
    The damping of hot giant dipole resonances is investigated. The contribution of surface scattering is compared with the contribution from interparticle collisions. A unified response function is presented which includes surface damping as well as collisional damping. The surface damping enters the response via the Lyapunov exponent and the collisional damping via the relaxation time. The former is calculated for different shape deformations of quadrupole and octupole type. The surface as well as the collisional contribution each reproduce almost the experimental value, therefore we propose a proper weighting between both contributions related to their relative occurrence due to collision frequencies between particles and of particles with the surface. We find that for low and high temperatures the collisional contribution dominates whereas the surface damping is dominant around the temperatures 3/2Ď€\sqrt{3}/2\pi of the centroid energy.Comment: PRC su

    Skyrme-Rpa Description of Dipole Giant Resonance in Heavy and Superheavy Nuclei

    Full text link
    The E1(T=1) isovector dipole giant resonance (GDR) in heavy and super-heavy deformed nuclei is analyzed over a sample of 18 rare-earth nuclei, 4 actinides and three chains of super-heavy elements (Z=102, 114 and 120). Basis of the description is self-consistent separable RPA (SRPA) using the Skyrme force SLy6. The self-consistent model well reproduces the experimental data (energies and widths) in the rare-earth and actinide region. The trend of the resonance peak energies follows the estimates from collective models, showing a bias to the volume mode for the rare-earths isotopes and a mix of volume and surface modes for actinides and super-heavy elements. The widths of the GDR are mainly determined by the Landau fragmentation which in turn is found to be strongly influenced by deformation. A deformation splitting of the GDR can contribute about one third to the width and about 1 MeV further broadening can be associated to mechanism beyond the mean-field description (escape, coupling with complex configurations).Comment: 9 pages, 12 figures, 2 table

    Properties of the nuclear medium

    Get PDF
    We review our knowledge on the properties of the nuclear medium that have been studied, along many years, on the basis of many-body theory, laboratory experiments and astrophysical observations. First we consider the realm of phenomenological laboratory data and astrophysical observations, and the hints they can give on the characteristics that the nuclear medium should possess. The analysis is based on phenomenological models, that however have a strong basis on physical intuition and an impressive success. More microscopic models are also considered, and it is shown that they are able to give invaluable information on the nuclear medium, in particular on its Equation of State. The interplay between laboratory experiments and astrophysical observations are particularly stressed, and it is shown how their complementarity enriches enormously our insights into the structure of the nuclear medium. We then introduce the nucleon-nucleon interaction and the microscopic many-body theory of nuclear matter, with a critical discussion about the different approaches and their results. The Landau Fermi Liquid theory is introduced and briefly discussed. As illustrative example, we discuss neutron matter at very low density, and it is shown how it can be treated within the many-body theory. A section is dedicated to the pairing problem. The connection with nuclear structure is then discussed, on the basis of the Energy Density Functional method. The possibility to link the physics of exotic nuclei and the astrophysics of neutron stars is particularly stressed. Finally we discuss the thermal properties of the nuclear medium, in particular the liquid-gas phase transition and its connection with the phenomenology on heavy ion reactions and the cooling evolution of neutron stars. The presentation has been taken for non-specialists and possibly for non-nuclear physicists.Comment: 90 pages, 29 figures, revised versio

    Besprechungen

    No full text
    • …
    corecore