4,557 research outputs found

    Evidence for Accretion in the High-resolution X-ray Spectrum of the T Tauri Star System Hen 3-600

    Get PDF
    We present high-resolution X-ray spectra of the multiple T Tauri star system Hen 3-600, obtained with the High Energy Transmission Grating Spectrograph on the Chandra X-ray Observatory. Two binary components were detected in the zeroth-order image. Hen 3-600-A, which has a large mid-infrared excess, is a 2-3 times fainter in X-rays than Hen 3-600-B, due to a large flare on B. The dispersed X-ray spectra of the two primary components overlap spatially; spectral analysis was performed on the combined system. Analysis of the individual spectra was limited to regions where the contributions of A and B can be disentangled. This analysis results in two lines of evidence indicating that the X-ray emission from Hen 3-600 is derived from accretion processes: line ratios of O VII indicate that the characteristic density of its X-ray-emitting plasma is large; a significant component of low-temperature plasma is present and is stronger in component A. These results are consistent with results obtained from X-ray gratings spectroscopy of more rapidly accreting systems. All of the signatures of Hen 3-600 that are potential diagnostics of accretion activity -- X-ray emission, UV excess, H-alpha emission, and weak infrared excess -- suggest that its components represent a transition phase between rapidly accreting, classical T Tauri stars and non-accreting, weak-lined T Tauri stars.Comment: latex, 27 pages, 12 figures, 6 tables; accepted by Ap

    Bivariate tt-distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems

    Full text link
    Interacting many-particle systems with a mean-field one body part plus a chaos generating random two-body interaction having strength λ\lambda, exhibit Poisson to GOE and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by λ=λc\lambda=\lambda_c and λ=λF\lambda=\lambda_F, respectively; λF>>λc\lambda_F >> \lambda_c. For these systems theory for matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with λ>λF\lambda > \lambda_F, in terms of orbitals occupation numbers, level densities and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using bivariate tt-distribution, the theory extends below from the Gaussian regime to the BW regime up to λ=λc\lambda=\lambda_c. This is well tested in numerical calculations for six spinless fermions in twelve single particle states.Comment: 7 pages, 2 figure

    How to make large, void free dust clusters in dusty plasma under microgravity

    Full text link
    Collections of micrometer sized solid particles immersed in plamsa are used to mimic many systems from solid state and fluid physics, due to their strong electrostatic interaction, their large inertia, and the fact that they are large enough to be visualized with ordinary optics. On Earth, gravity restricts the so called dusty plasma systems to thin, two-dimensional layers, unless special experimental geometries are used, involving heated or cooled electrons, and/or the use of dielectric materials.In micro-gravity experiments, the formation of a dust-free void breaks the isotropy of three-dimensional dusty plasma systems. In order to do real three-dimensional experiments, this void has somehow to be closed. In this paper, we use a fully self-consistent fluid model to study the closure of a void in a micro-gravity experiment, by lowering the driving potential. The analysis goes beyond the simple description of the virtual void, which describes the formation of a void without taking the dust into account. We show that self-organization plays an important role in void formation and void closure, which also allows a reversed scheme, where a discharge is run at low driving potentials and small batches of dust are added. No hysteresis is found this way. Finally, we compare our results to recent experiments and find good agreement,but only when we do not take charge-exchange collisions into account

    Experimental and computational characterization of a modified GEC cell for dusty plasma experiments

    Full text link
    A self-consistent fluid model developed for simulations of micro- gravity dusty plasma experiments has for the first time been used to model asymmetric dusty plasma experiments in a modified GEC reference cell with gravity. The numerical results are directly compared with experimental data and the experimentally determined dependence of global discharge parameters on the applied driving potential and neutral gas pressure is found to be well matched by the model. The local profiles important for dust particle transport are studied and compared with experimentally determined profiles. The radial forces in the midplane are presented for the different discharge settings. The differences between the results obtained in the modified GEC cell and the results first reported for the original GEC reference cell are pointed out

    Finite temperature excitations of a trapped Bose gas

    Full text link
    We present a detailed study of the temperature dependence of the condensate and noncondensate density profiles of a Bose-condensed gas in a parabolic trap. These quantitites are calculated self-consistently using the Hartree-Fock-Bogoliubov equations within the Popov approximation. Below the Bose-Einstein transition the excitation frequencies have a realtively weak temperature dependence even though the condensate is strongly depleted. As the condensate density goes to zero through the transition, the excitation frequencies are strongly affected and approach the frequencies of a noninteracting gas in the high temperature limit.Comment: 4 pages, Latex, 4 postscript figures. Submitted to Physical Review Letter

    A Geophysical Atlas for Interpretation of Satellite-derived Data

    Get PDF
    A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included

    Kinetic Theory of Collective Excitations and Damping in Bose-Einstein Condensed Gases

    Full text link
    We calculate the frequencies and damping rates of the low-lying collective modes of a Bose-Einstein condensed gas at nonzero temperature. We use a complex nonlinear Schr\"odinger equation to determine the dynamics of the condensate atoms, and couple it to a Boltzmann equation for the noncondensate atoms. In this manner we take into account both collisions between noncondensate-noncondensate and condensate-noncondensate atoms. We solve the linear response of these equations, using a time-dependent gaussian trial function for the condensate wave function and a truncated power expansion for the deviation function of the thermal cloud. As a result, our calculation turns out to be characterized by two dimensionless parameters proportional to the noncondensate-noncondensate and condensate-noncondensate mean collision times. We find in general quite good agreement with experiment, both for the frequencies and damping of the collective modes.Comment: 10 pages, 8 figure

    A Gapless Theory of Bose-Einstein Condensation in Dilute Gases at Finite Temperature

    Full text link
    In this paper we develop a gapless theory of BEC which can be applied to both trapped and homogeneous gases at zero and finite temperature. The many-body Hamiltonian for the system is written in a form which is approximately quadratic with higher order cubic and quartic terms. The quadratic part is diagonalized exactly by transforming to a quasiparticle basis, while the non-quadratic terms are dealt with using first and second order perturbation theory. The conventional treatment of these terms, based on factorization approximations, is shown to be inconsistent. Infra-red divergences can appear in individual terms of the perturbation expansion, but we show analytically that the total contribution beyond quadratic order is finite. The resulting excitation spectrum is gapless and the energy shifts are small for a dilute gas away from the critical region, justifying the use of perturbation theory. Ultra-violet divergences can appear if a contact potential is used to describe particle interactions. We show that the use of this potential as an approximation to the two-body T-matrix leads naturally to a high-energy renormalization. The theory developed in this paper is therefore well-defined at both low and high energy and provides a systematic description of Bose-Einstein condensation in dilute gases. It can therefore be used to calculate the energies and decay rates of the excitations of the system at temperatures approaching the phase transition.Comment: 39 pages of Revtex. 1 figur

    Vortex stabilization in Bose-Einstein condensate of alkali atom gas

    Full text link
    A quantized vortex in the Bose-Einstein condensation (BEC), which is known to be unstable intrinsically, is demonstrated theoretically to be stabilized by the finite temperature effect. The mean-field calculation of Popov approximation within the Bogoliubov theory is employed, giving rise to a self-consistent solution for BEC confined by a harmonic potential. Physical origin of this vortex stabilization is investigated. An equivalent effect is also proved to be induced by an additional pinning potential at the vortex center produced by a focused laser beam even at the lowest temperature. The self-consistent solutions give detailed properties of a stable vortex, such as the spatial profiles of the condensate and non-condensate, the particle current density around the core, the whole excitation spectrum, and their temperature dependences.Comment: 11 pages, 17 eps figure
    corecore