486 research outputs found

    CMB acoustic scale in the entropic-like accelerating universe

    Full text link
    We consider generalizations of the entropic accelerating universe recently proposed in Ref. [4,5] and show that their background equations can be made equivalent to a model with a dark energy component with constant parameter of state wX=−1+2 γ/3w_{X} = -1 + 2\, \gamma /3, where γ\gamma is related to the coefficients of the new terms in the Friedman equations. After discussing all the Friedman equations for an arbitrary γ\gamma, we show how to recover the standard scalings for dust and radiation. The acoustic scale ℓA\ell_A, related to the peak positions in the pattern of the angular power spectrum of the Cosmic Microwave Background anisotropies, is also computed and yields the stringent bound ∣γ∣≪1|\gamma|\ll 1. We then argue that future data might be able to distinguish this model from pure Λ\LambdaCDM (corresponding to γ=0\gamma=0).Comment: 6 pages, 2 figures. Accepted for publication in Physical Review

    On boundary terms and conformal transformations in curved space-times

    Get PDF
    We intend to clarify the interplay between boundary terms and conformal transformations in scalar-tensor theories of gravity. We first consider the action for pure gravity in five dimensions and show that, on compactifing a la Kaluza-Klein to four dimensions, one obtains the correct boundary terms in the Jordan (or String) Frame form of the Brans-Dicke action. Further, we analyze how the boundary terms change under the conformal transformations which lead to the Pauli (or Einstein) frame and to the non-minimally coupled massless scalar field. In particular, we study the behaviour of the total energy in asymptotically flat space-times as it results from surface terms in the Hamiltonian formalism.Comment: LaTeX 2e, 12 pages, no figure

    Evolution of Large Scale Curvature Fluctuations During the Perturbative Decay of the Inflaton

    Full text link
    We study the evolution of cosmological fluctuations during and after inflation driven by a scalar field coupled to a perfect fluid through afriction term. During the slow-roll regime for the scalar field, the perfect fluid is also frozen and isocurvature perturbations are generated. After the end of inflation, during the decay of the inflaton, we find that a change in the observationally relevant large scale curvature fluctuations is possible.Comment: 9 pages, 2 figures; v2: version published in PR

    Is a Dissipative Regime During Inflation in Agreement with Observations?

    Full text link
    We study the spectral index of curvature perturbations for inflationary models where the driving scalar field is coupled to a relativistic fluid through a friction term Γ\Gamma. We find that only a very small friction term - Γ≪H\Gamma \ll H, with H being the Hubble parameter during inflation - is allowed by observations, otherwise curvature fluctuations are generated with a spectral index nsn_s unacceptably red. These results are generic with respect to the inflationary potential and known dependence of the friction term on the scalar field and the energy density of the relativistic fluid. We compare our findings with previous investigations.Comment: 4 pages, 2 tables, 1 figur

    Noncommutative Inspired Reissner-Nordstr\"om Black Holes in Large Extra Dimensions

    Full text link
    Recently, a new noncommutative geometry inspired solution of the coupled Einstein-Maxwell field equations including black holes in 4-dimension is found. In this paper, we generalize some aspects of this model to the Reissner-Nordstr\"om (RN) like geometries with large extra dimensions. We discuss Hawking radiation process based on noncommutative inspired solutions. In this framework, existence of black hole remnant and possibility of its detection in LHC are investigated.Comment: 24 pages, 12 figures, revised version to appear in Commun. Theor. Phy

    Discrete Symmetries and Localization in a Brane-world

    Get PDF
    Discrete symmetries are studied in warped space-times with one extra dimension. In particular, we analyze the compatibility of five- and four-dimensional charge conjugation, parity, time reversal and the orbifold symmetry Z_2 with localization of fermions on the four-dimensional brane-world and Lorentz invariance. We then show that, when a suitable topological scalar field (the ``kink'') is included, fermion localization is a consequence of (five-dimensional) CPT invariance.Comment: REVTeX, 8 pages, 1 EPS figure include

    Pre - Inflationary Clues from String Theory ?

    Full text link
    "Brane supersymmetry breaking" occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the chi^2 fits for the low-l CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.Comment: 34 pages, LaTeX, 16 eps figures. Relative displacement in fig. 14 and some typos corrected, references and acknowledgments updated. To appear in JCA

    Instability of reconstruction of the low CMB multipoles

    Full text link
    We discuss the problem of the bias of the Internal Linear Combination (ILC) CMB map and show that it is closely related to the coefficient of cross-correlation K(l) of the true CMB and the foreground for each multipole l. We present analysis of the cross-correlation for the WMAP ILC quadrupole and octupole from the first (ILC(I)) and the third (ILC(III)) year data releases and show that these correlations are about -0.52-0.6. Analysing 10^4 Monte Carlo simulations of the random Gaussian CMB signals, we show that the distribution function for the corresponding coefficient of the cross-correlation has a polynomial shape P(K,l)\propto(1-K^2)^(l-1). We show that the most probable value of the cross-correlation coefficient of the ILC and foreground quadrupole has two extrema at K ~= +/-0.58$. Thus, the ILC(III) quadrupole represents the most probable value of the coefficient K. We analyze the problem of debiasing of the ILC CMB and pointed out that reconstruction of the bias seems to be very problematic due to statistical uncertainties. In addition, instability of the debiasing illuminates itself for the quadrupole and octupole components through the flip-effect, when the even (l+m) modes can be reconstructed with significant error. This error manifests itself as opposite, in respect to the true sign of even low multipole modes, and leads to significant changes of the coefficient of cross-correlation with the foreground. We show that the CMB realizations, whose the sign of quadrupole (2,0) component is negative (and the same, as for all the foregrounds), the corresponding probability to get the positive sign after implementation of the ILC method is about 40%.Comment: 11 pages, 5 figure

    Early Dark Energy Cosmologies

    Full text link
    We propose a novel parameterization of the dark energy density. It is particularly well suited to describe a non-negligible contribution of dark energy at early times and contains only three parameters, which are all physically meaningful: the fractional dark energy density today, the equation of state today and the fractional dark energy density at early times. As we parameterize Omega_d(a) directly instead of the equation of state, we can give analytic expressions for the Hubble parameter, the conformal horizon today and at last scattering, the sound horizon at last scattering, the acoustic scale as well as the luminosity distance. For an equation of state today w_0 < -1, our model crosses the cosmological constant boundary. We perform numerical studies to constrain the parameters of our model by using Cosmic Microwave Background, Large Scale Structure and Supernovae Ia data. At 95% confidence, we find that the fractional dark energy density at early times Omega_early < 0.06. This bound tightens considerably to Omega_early < 0.04 when the latest Boomerang data is included. We find that both the gold sample of Riess et. al. and the SNLS data by Astier et. al. when combined with CMB and LSS data mildly prefer w_0 < -1, but are well compatible with a cosmological constant.Comment: 6 pages, 3 figures; references added, matches published versio

    Dominant Multipoles in WMAP5 Mosaic Data Correlation Maps

    Full text link
    The method of correlation mapping on the full sphere is used to study the properties of the ILC map, as well as the dust and synchrotron background components. An anomalous correlation of the components with the ILC map in the main plane and in the poles of the ecliptic and equatorial coordinate systems was discovered. Apart from the bias, a dominant quadrupole contribution in the power spectrum of the mosaic correlation maps was found in the pixel correlation histogram. Various causes of the anomalous signal are discussed.Comment: 10 pages,11 figure
    • …
    corecore