113 research outputs found

    Adiabatic population transfer via multiple intermediate states

    Get PDF
    This paper discusses a generalization of stimulated Raman adiabatic passage (STIRAP) in which the single intermediate state is replaced by NN intermediate states. Each of these states is connected to the initial state \state{i} with a coupling proportional to the pump pulse and to the final state \state{f} with a coupling proportional to the Stokes pulse, thus forming a parallel multi-Λ\Lambda system. It is shown that the dark (trapped) state exists only when the ratio between each pump coupling and the respective Stokes coupling is the same for all intermediate states. We derive the conditions for existence of a more general adiabatic-transfer state which includes transient contributions from the intermediate states but still transfers the population from state \state{i} to state \state{f} in the adiabatic limit. We present various numerical examples for success and failure of multi-Λ\Lambda STIRAP which illustrate the analytic predictions. Our results suggest that in the general case of arbitrary couplings, it is most appropriate to tune the pump and Stokes lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure

    STIRAP transport of Bose-Einstein condensate in triple-well trap

    Full text link
    The irreversible transport of multi-component Bose-Einstein condensate (BEC) is investigated within the Stimulated Adiabatic Raman Passage (STIRAP) scheme. A general formalism for a single BEC in M-well trap is derived and analogy between multi-photon and tunneling processes is demonstrated. STIRAP transport of BEC in a cyclic triple-well trap is explored for various values of detuning and interaction between BEC atoms. It is shown that STIRAP provides a complete population transfer at zero detuning and interaction and persists at their modest values. The detuning is found not to be obligatory. The possibility of non-adiabatic transport with intuitive order of couplings is demonstrated. Evolution of the condensate phases and generation of dynamical and geometric phases are inspected. It is shown that STIRAP allows to generate the unconventional geometrical phase which is now of a keen interest in quantum computing.Comment: 9 pages, 6 figures. To be published in Laser Physics (v. 19, n.4, 2009

    Sub-Doppler cooling of three-level A Atoms in space-shifted standing light waves

    Get PDF
    We present an investigation of an alternative mechanism for sub-Doppler cooling of atoms, based on coherent population transfer in three-level LAMBDA systems. The mechanism considered is that of a LAMBDA atom interacting with two standing light waves with a mutual spatial phase shift phi not-equal 0. The spatial dependence of the level populations of the LAMBDA atom for different values of phi is presented. For phi not-equal 0, this clearly demonstrates coherent population transfer in an atom with transverse motion along the space-shifted nodes and antinodes of the two standing waves. We show that this allows translational temperatures well below the Doppler limit T(D) = hgammaBAR/k(B) to be achieved

    Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system

    Get PDF
    The effects of Coherent excitation of a two level system with a linearly chirped pulse are studied theoretically and experimentally (in Rb (5s - 5p)) in the low field regime. The Coherent Transients are measured directly on the excited state population on an ultrashort time scale. A sharp step corresponds to the passage through resonance. It is followed by oscillations resulting from interferences between off-resonant and resonant contributions. We finally show the equivalence between this experiment and Fresnel diffraction by a sharp edge.Comment: 4 pages, 4 figures, to appear in PR

    Feshbach-Stimulated Photoproduction of a Stable Molecular Condensate

    Full text link
    Photoassociation and the Feshbach resonance are, in principle, feasible means for creating a molecular Bose-Einstein condensate from an already-quantum-degenerate gas of atoms; however, mean-field shifts and irreversible decay place practical constraints on the efficient delivery of stable molecules using either mechanism alone. We therefore propose Feshbach-stimulated Raman photoproduction, i.e., a combination of magnetic and optical methods, as a viable means to collectively convert degenerate atoms into a stable molecular condensate with near-unit efficiency.Comment: 5 pages, 3 figures, 1 table; v3 includes few-level diagram of scheme, and added discussion; transferred to PR

    Quantum computation with trapped polar molecules

    Full text link
    We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1-D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with ≳104\gtrsim 10^4 qubits, which can perform ∼105\sim 10^5 CNOT gates in the anticipated decoherence time of ∼5\sim 5 s.Comment: 4 pages, RevTeX 4, 2 figures. Edited for length and converted to RevTeX, but no substantial changes from earlier pdf versio

    Context-Dependent Requirement for dE2F during Oncogenic Proliferation

    Get PDF
    The Hippo pathway negatively regulates the cell number in epithelial tissue. Upon its inactivation, an excess of cells is produced. These additional cells are generated from an increased rate of cell division, followed by inappropriate proliferation of cells that have failed to exit the cell cycle. We analyzed the consequence of inactivation of the entire E2F family of transcription factors in these two settings. In Drosophila, there is a single activator, dE2F1, and a single repressor, dE2F2, which act antagonistically to each other during development. While the loss of the activator dE2F1 results in a severe impairment in cell proliferation, this defect is rescued by the simultaneous loss of the repressor dE2F2, as cell proliferation occurs relatively normally in the absence of both dE2F proteins. We found that the combined inactivation of dE2F1 and dE2F2 had no significant effect on the increased rate of cell division of Hippo pathway mutant cells. In striking contrast, inappropriate proliferation of cells that failed to exit the cell cycle was efficiently blocked. Furthermore, our data suggest that such inappropriate proliferation was primarily dependent on the activator, de2f1, as loss of de2f2 was inconsequential. Consistently, Hippo pathway mutant cells had elevated E2F activity and induced dE2F1 expression at a point when wild-type cells normally exit the cell cycle. Thus, we uncovered a critical requirement for the dE2F family during inappropriate proliferation of Hippo pathway mutant cells

    Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells

    Get PDF
    Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH−/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH−/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH−/− iPS cell lines, we aggregated FAH−/−-iPS cells with tetraploid embryos and obtained entirely FAH−/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH−/− mice. Then, we transduced FAH cDNA into the FAH−/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/

    The Epithelial-to-Mesenchymal Transition (EMT), a Particular Case

    No full text
    • …
    corecore