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Sub-Doppler cooling of three-level A atoms in space-shifted standing light waves

D. Kosachiov
State Technical University, 195251, St. Petersburg, Russia

Yu. Rozhdestvensky
S. I Va. vilov State Optical Institute, Igg0$$, St Pe. tersburg, Russia

M. Olsen, L. Plimak, and D. F. Walls
Department of Physics, University of Auckland, Private Bag M019, Auckland, ¹mZealand

(Received 21 March 1994)

We present an investigation of an alternative mechanism for sub-Doppler cooling of atoms, based
on coherent population transfer in three-level A systems. The mechanism considered is that of a A
atom interacting with two standing light waves with a mutual spatial phase shift &p g 0. The spatial
dependence of the level populations of the A atom for different values of y is presented. For tp g 0,
this clearly demonstrates coherent population transfer in an atom with transverse motion along the
space-shifted nodes and antinodes of the two standing waves. We show that this allows translational
temperatures well below the Doppler limit To = hp/k~ to be achieved

PACS number(s): 32.80.Pj

I. INTRODUCTION

At present, mechanisms for the translational cooling
of neutral atoms allow temperatures below the Doppler
limit TD = hp/k~, determined by the natural linewidth
2p [1], to be achieved. These mechanisms are based on
coherent phenomena in multilevel atoms, resulting, in
principle, in deep cooling of the atoms. For example, co-
herent population trapping [2] allows temperatures be-
low T~, as well as below the temperature Ttt = R/ks
[1], determined by the recoil energy R = 52k2/2M, to
be obtained (M is the atomic mass and hk is the photon
momentum).

Another coherent effect existing in three-level A

schemes, namely, coherent population transfer, is also
widely investigated at present ( [3] see also references
therein). The essence of this effect is in the population
transfer between the two lower levels of a A system in-
teracting with two time-shifted light pulses. The absence
of population in the upper level is characteristic of this
effect. The population exchange between lower levels can
be described in a similar manner to the well known qua-
sicrossing of molecular terms [4]. The low upper level

population, with substantial population transfer between
lower levels, seems promising for the cooling of atoms,
since this should result in high light pressure forces with
low velocity diffusion. In general, the light pressure force
is defined by the interaction of the induced dipole mo-
ment of the atom with the light wave. In turn, the ex-
istence of the induced dipole moment is connected with
population transfer in the system. At the same time,
at low field intensities diffusion of the atoms in velocity
space is mainly connected with momentum Quctuations
due to the randomness of the direction of spontaneous
emission and is therefore proportional to the population
of the upper level. Since the coherent population trans-

fer implies that this population is nearly zero, the whole
situation looks favorable for deep translational cooling of
the atoms.

In practice, the coherent population transfer can be
realized by means of placing the A atom into the field of
two standing waves of nearly equal &equencies, shifted
in space. For a drifting atom, the spatial separation of
the antinodes of these waves transforms into a time shift
between two series of the light pulses. These considera-
tions result in the alternative method for the sub-Doppler
cooling of A atoms presented in this paper.

II. STATEMENT OF THE PROBLEM

We consider three-level atoms in the A configuration
(Fig. 1) normally incident on two standing wavelight
fields. The cooling of the atomic motion is in the di-
rection along the standing waves (z direction). The two
standing light waves have a spatial phase shift p with
respect to each other,

FIG. 1. Three-level A atom in the 6eld of the two standing
waves.
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Here p~; = p;, and « ——
&~ +v, &, , and 6d 8

are the detunings of the standing waves from the atomic
transitions (cf. Fig. 1); O = dE /25 are the Rabi
frequencies; p represents the spontaneous decay rates
]3) ~ ]m) (m = 1,2), assumed equal for both levels; and
I' is the decay rate of the atomic coherence p12 (I' « p).
When obtaining (2), the anisotropy of the spontaneous
decays was neglected.

The light pressure force acting on a A atom in the field

(1) can be found as in [1,5]

E, = —hk[OI(PI3+ p31) sin(kz)

+O2(p23 + p32) Slil (kZ + (p)] ) (3)

where pq3 and p23 are the nondiagonal elements of the
A atom's density matrix found from (2), for t » p
The latter determines the time scale on which the atomic
motion can be considered classically. Formally, it means
that when solving system (2) time derivatives on the left
can be neglected.

In the system thus obtained, we expand the p-matrix
elements in a spatial Fourier series

+oo
(n)

p;& —— p,- - exp cnkz, (4)

which accounts directly for the spatial structure of the
light Geld. This leads to an inGnite system of recur-
rent algebraic equations for p; (recalling that the time
derivatives are neglected). A solution to this system will
be sought by following the continuous &action method

g (z, t) = 2EI cos nit cos (kz) + 2E2 cos u2«os (kz + p),

(1)

where E and u are the amplitude and &equency of
the wave resonant with the atomic transition ]3) + ]m)
(m = 1,2). The two wave vectors are assuined to be ap-
proximately equal, kq = k2 k. In the rotating wave ap-
proximation, the dynamics of the atomic density matrix
in the field (1) are described by the following equations
[5]:

[6]. The nondiagonal matrix elements p13 and p23 may
be expressed in terms of pqq, p2~, and pq2, this resulting
in the system being rewritten as a system of recurrent
matrix equations,

A„+2X„+2+B„X„+|„—2X„—2 ———ipb„o
2

q(o)
q(2)

~+ (4) ~

(6)

where Q(zz) are combinations of the direct and inverse
matrices A, B„, and C„. By making use of (6), the
force (3) can also be found as an infinite chain fraction.
Since we will be interested later in atomic distributions
with a spatial distribution of Az )) A, only the spatially
homogeneous part of the light pressure force will be con-
sidered [5],

F, = — F,dz.

III. RESULTS AND DISCUSSION

Let us now consider the behavior of the light pressure
force F, for small atomic velocities. In Fig. 2, the de-
pendence of this force on the atomic velocity for diferent
values of the phase shift &p [cf. (1)] between the standing
waves is presented. It can be seen that for y g 0 this
dependence is dispersive near zero velocity and the fric-
tion coefficient at v = 0 is greatly increased. For p = 0
there is no dispersive behavior. Note that, for values of
the detunings and Rabi &equencies given in Fig. 2(a),
for p = 0 "heating" of the atoms takes place whereas for
y g 0 we have "cooling. " This means that in an exper-
iment we can switch &om the collimation (narrowing of
the velocity distribution) to decollimation of the atomic
beam by simply changing the spatial phase shift y while
leaving all other conditions (i.e., the Rabi frequencies and
detunings) unchanged.

Figure 3 demonstrates how the velocity dependence of
the light force changes with increasing detunings of the
light waves for a given value of g. It can be seen that
the amplitude of the force diminishes and the velocity
domain where the dispersive dependence takes place gets
narrower, but the derivative of the force at v, = 0 re-
mains unchanged for a wide range of detuning values.
It should be emphasized that the dispersive character of
the dependence of the light force near zero velocity is not
associated with the saturation of the transitions in the

n = 0, +2, +4, . . . . (5)

(~) (n) (n) (n)Here X„= pii, p22, p», p» and p = (p, p, 0, 0).
A, B„, and C are 4 x 4 matrices, the elements of which
are functions such as f(y)/[zp —zzkv, k b,~] (p = 1, 2),
where f (y) are rational functions of cos y and sin p.

A solution to (5) can be found as an infinite converging
matrix chain fraction [6],



1510 D KOSACHIOV et al 50

0.015—

0.01

0.005—

0-

F"/a~k

0.015

0.01

0.005

-0.005
-0.005

-0.015

-0.02

-0.01

-0.015

-0.02

-0.025
-0.3

I

-0.2 -0. 1

I

0. 1

I

0.2 0.3

kv /q

-0.025
-0.3 -0.2 0. 1 0,2 ().3

kv, /p

0.2 0,4

0, 1-

0-

-0.1-

-0,2—

-0,3-

I
1

I
I

I

I
I
I
I
I
I
\
I

I
I
I
I

'I

0,3

02

0.1

-0. 1

-0.2

-0,3

-0,4
-0.3 -0,2 -0. 1

I

0. 1

I

0.2 0.3
-0.4

-0.3 -0,2 0.2 (),3

kv /p

FIG. 2. De ep ndence of the light pressure force I', on the
velocity v of the A atom for different values of the phase shift

rp (a) b. ,z ——p, b, 2 2p, Aq —02 = 0.5p, a—nd I' = 0.01'.

=4
24, , y = —,2; 3, y = — and 4 (p = 4. (b)6 7 1 4

y = 4p, A2 ——Sp, Aq ——02 ——4p, and I' = 0.01'. 1, y = 0;
2& p 6& and 3, p= 4.

FIG. 3. De enp "ence of the light pressure force F, on the
velocit v of t e'

y he A atom for difFerent values of the detun-

ings. (a) y = 2, 0& ——I)& ——0.5p, and I' = 0.01'. 1,
= p, and A2 ——2p; 2, E~ ——5p, and E2 ——10'; the

dashed curve corresponds to y = 0 4 g
——p, and A2 ——2p.

J 1 —8+ +2 = 16', A~ ——02 ——4p, and I' = 0.01
2' +1 = 8 f&A2 = 16+&Oy = Q2 = 4p& and

=0.01'; 3, p=0; and 4, p= —.
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Curve 1 exhibits no dispersive behavior and nearly coin-
cides with the force dependence on the velocity for p = 0
(Fig. 4). At the same time, curve 2 in Fig. 4 corre-
sponds to Q(D) g 0 and Q(2) P 0 in the chain fraction
(6), which, in turn, corresponds to the following approx-
imation for the matrix elements:

p s ——p s exp ikz + p s exp (—ikz) + p s exp3tkz(+&) . ( &) (+3)

+p & exp( —3ikz), m = 1, 2

pn =
p&& + p&& exp 2ikz + p&& exp (—2ikz),(o) (+2) . (—2)

I = 1, 2, 3

p» —
p&2 + p&2 exp 2ikz + p, z exp (—2ikz).(o) (+2) . (—2)

Y2(z)

Fg(z) + Y2(z)
'

Yj(z)
Yi(z) + Yq(z)

'

2' (z)Y2(z)

Yi(z) + Y2(z)
' (9)

As soon as the spatial dependence of the populations of
the lower levels of the A atom is included, the desired
efFect appears: curve 2 exhibits the pronounced disper-
sive shape and a considerably increased kiction coefFi-
cient. Further quantitative improvements [Q(4) g 0 in
the chain fraction (6)) do not bring qualitative changes
(curve 3 in Fig. 4). This also demonstrates the quick
convergence of the chain fraction and the consistency of
computations using this representation.

Clearly the effect of interest is connected with the spa-
tial dependence of the population of the two lower levels
of the A atom. Consider erst this dependence for difFer-
ent values of p, assuming that v, = 0. In this case, the
expressions for the populations can be found as station-
ary analytical solutions to the system (2),

D„=h k gpss = 0.06h, k p/M.

Then, the temperature of the cooled atoms can be found
from the Einstein formula [5] to be

D„ = 10 &(TD,2'
kg

so that the spatially shifted standing light waves allow
atomic temperatures well below the Doppler limit to be
obtained. The velocity interval where the dispersive be-
haviour of the light force takes place is of the order of
O. lp/k = 1 ms . The evolution of the velocity distri-
bution of the A atoms in the standing waves is shown in
Fig. 5. When drawing the curves in Fig. 5, the Liouville
equation was solved with the force found by the method

by time-delayed light pulses [3]. This is exactly how
the moving atom "sees" the antinodes of the two stand-
ing waves: the spatial phase shift p transforms into a
time shift of p/kv, . Therefore, the velocity is "small" if
kn (( pi', when only the adiabatic population transfer
exists. The maximum of the average force due to the co-
herent population transfer corresponds to kv pl', and
this force dies out when kv, )) yI', which is in obvious
agreement with the numerical data.

Note that in the A system the "adiabatic" average force
at zero velocity may be nonzero, but its value is small
compared to that due to the coherent population trans-
fer. The existence of this residual force results in the
atomic beam's deHection without afFecting its cooling or
heating.

Let us now estimate the atomic temperature assum-
ing that y =

2 and Ice, 0. For the parameters
4~ = p, A2 ——2p, and Oq, 2

——0.5p, the dynamic fric-
tion coefBcient P found from Fig. 3 is equal to 75 k /M.
At the same time, the diffusion coeKcient is determined
mainly by the quantity p33 given by (9), and if estimated
following [5] is found to be

where Yq(z) = O2~cos2(kz)/(b, 2~ + p2) and Yz(z)
O22cos2(kz + p)/(622 + p2) and it is assumed that
Aq, b,2, p &) Oq, O2. One can see from (9) that there ex-
ist two physical situations. The erst one occurs for p = 0
when the populations of the lower levels of the A atom,
pqq and p22, are de6ned by the detunings and exhibit no
spatial dependence. Conversely, if p g 0 the strong spa-
tial dependence of the populations emerges. In the node
of the first standing wave [cos (kz) = 0] only the second
wave has any efFect, so that pzz ——1 and p22

——0. Simi-
larly, if cos {kz + rp) = 0, one finds pqq ——0 and pz2 ——1.
Thus, for an atom moving slowly enough, adiabatic pop-
ulation exchange between the lower levels takes place (cf.
[7]).

If the velocity of the atom is a little larger, the adia-
batic condition is violated and the second efFect emerges

coherent population transfer in the A system. Ba-
sically, this efFect takes place in the A system excited

I

0.0

FIG. 5. Time evolution of the velocity distribution of the
A atoms interacting with the field of the standing waves. 1,
initial velocity distribution with b.v, = 0.5p/k, which cor-
responds to T = T~ for Na; 2, velocity distribution at
t =5 x10 s for p= 2, 0q ——Og ——0.5f, &~ ——p, Ag ——2p,
and I' = 0.01'; 3, velocity distribution at t = 10 s for
y = 0, Og ——02 ——0.5p, Ay ———p, E2 ———2p, and F = 0.01'.
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FIG. 6. Dependence of the light pressure force I' on
the velocity v, of the A atom for considerable saturation
of the atomic transitions. 1, io = 0; 2, p = —. (a)
Oq ——Aq = 1.5p, Eq = p, A2 ——2p, and I' = 0.01'. (b)
~i = &g = 5p, ~q ——3p, Aq ——6p, and F = 0.01'.

described above. The narrowing of velocity distribution
at p =

2 is clearly evident.
Finally, Fig. 6 demonstrates how the velocity depen-

dence of the light force changes with increasing intensity
of the light waves.

Note that all the considerations above retain their va-

lidity if the standing waves afFecting the A atom Buc-
tuate, but, at the same time, exhibit a high degree of
mutual coherence. In practice, this can be easily realized
if one of the waves is generated &om the other using an
optoacoustic modulator.

When this manuscript was already prepared for pub-
lication, the authors became aware of a recent paper
[8]. Proceeding from a diferent standpoint, the authors
of Ref. [8] proposed the same mechanism for the sub-

Doppler laser cooling and presented its experimental re-
alization. It may easily be seen that our results are
in good qualitative agreement with the phenomena ob-
served. More detailed discussion of the results [8] using
our non-phenomenological quantum computational ap-
proach may be subject to further investigations.

In conclusion, two effects mainly determine the spatial
dependence of the dynamics of the atomic level popula-
tions: adiabatic inhomogeneous optical pumping and co-
herent population transfer. Together these efFects essen-
tially change the population dynamics for p g 0, which
in turn results in substantial change in the character of
the interaction between the atomic system and the field

of the two standing waves as compared to the case of zero
spatial shift y = 0.
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