45 research outputs found

    Multi-Wavelength Monitoring of the Changing-Look AGN NGC 2617 during State Changes

    Get PDF
    Optical and near-infrared photometry, optical spectroscopy, and soft X-ray and UV monitoring of the changing-look active galactic nucleus NGC 2617 show that it continues to have the appearance of a type-1 Seyfert galaxy. An optical light curve for 2010-2017 indicates that the change of type probably occurred between 2010 October and 2012 February and was not related to the brightening in 2013. In 2016 and 2017 NGC 2617 brightened again to a level of activity close to that in 2013 April. However, in 2017 from the end of the March to end of July 2017 it was in very low level and starting to change back to a Seyfert 1.8. We find variations in all passbands and in both the intensities and profiles of the broad Balmer lines. A new displaced emission peak has appeared in Hβ. X-ray variations are well correlated with UV-optical variability and possibly lead by ̃2-3 d. The K band lags the J band by about 21.5 ± 2.5 d and lags the combined B + J bands by ̃25 d. J lags B by about 3 d. This could be because J-band variability arises predominantly from the outer part of the accretion disc, while K-band variability is dominated by thermal re-emission by dust. We propose that spectral-type changes are a result of increasing central luminosity causing sublimation of the innermost dust in the hollow bi-conical outflow. We briefly discuss various other possible reasons that might explain the dramatic changes in NGC 2617.Fil: Oknyansky, V. L.. Sternberg Astronomical Institute; RusiaFil: Gaskell, C. M.. Department of Astronomy and Astrophysics. University of California. Santa Cruz; Estados UnidosFil: Mikailov, K. M.. Shamakhy Astrophysical Observatory, National Academy of Sciences. Pirkuli; AzerbaiyánFil: Lipunov, V. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University ; RusiaFil: Shatsky, N. I.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tsygankov, S. S.. Tuorla Observatory, Department of Physics and Astronomy. University of Turku.; FinlandiaFil: Gorbovskoy, E. S.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tatarnikov, A. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Metlov, V. G.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Malanchev, K. L.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Brotherton, M.B.. University of Wyoming; Estados UnidosFil: Kasper, D.. University of Wyoming; Estados UnidosFil: Du, P.. Institute of High Energy Physics. Chinese Academy of Sciences; ChinaFil: Chen, X.. School of Space Science and Physics. Shandong University; ChinaFil: Burlak, M. A.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Buckley, D. A. H.. The South African Astronomical Observatory; SudáfricaFil: Rebolo, R.. Instituto de Astrofisica de Canarias; EspañaFil: Serra-Ricart, M.. Instituto de Astrofisica de Canarias; EspañaFil: Podestá, R.. Universidad Nacional de San Juan; ArgentinaFil: Levato, O. H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentin

    Non-Equilibrium Evolution Thermodynamics Theory

    Full text link
    Alternative approach for description of the non-equilibrium phenomena arising in solids at a severe external loading is analyzed. The approach is based on the new form of kinetic equations in terms of the internal and modified free energy. It is illustrated by a model example of a solid with vacancies, for which there is a complete statistical ground. The approach is applied to the description of important practical problem - the formation of fine-grained structure of metals during their treatment by methods of severe plastic deformation. In the framework of two-level two-mode effective internal energy potential model the strengthening curves unified for the whole of deformation range and containing the Hall-Petch and linear strengthening sections are calculated.Comment: 7 pages, 1 figur

    Long-term multiwavelength monitoring and reverberation mapping of NGC 2617 during a changing-look event

    Full text link
    We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC~2617 carried out from 2016 until 2022 and covering the wavelength range from the X-ray to the near-IR. The facilities included the telescopes of the SAI MSU, MASTER Global Robotic Net, the 2.3-m WIRO telescope, Swift, and others. We found significant variability at all wavelengths and, specifically, in the intensities and profiles of the broad Balmer lines. We measured time delays of ~ 6 days (~ 8 days) in the responses of the H-beta (H-alpha) line to continuum variations. We found the X-ray variations to correlate well with the UV and optical (with a small time delay of a few days for longer wavelengths). The K-band lagged the B band by 14 +- 4 days during the last 3 seasons, which is significantly shorter than the delays reported previously by the 2016 and 2017--2019 campaigns. Near-IR variability arises from two different emission regions: the outer part of the accretion disc and a more distant dust component. The HK-band variability is governed primarily by dust. The Balmer decrement of the broad-line components is inversely correlated with the UV flux. The change of the object's type, from Sy1 to Sy1.8, was recorded over a period of ~ 8 years. We interpret these changes as a combination of two factors: changes in the accretion rate and dust recovery along the line of sight.Comment: 14 pages, 15 figures, accepted by the MNRA
    corecore