232 research outputs found

    Implementation of a Standardized Handoff System for a General Surgery Residency Program

    Get PDF
    Introduction: The I-PASS Handoff Bundle is an evidence based standardized set of educational materials designed to decrease handoff failures in patient care. Two of every three sentinel events , the most serious events reported to the Joint Commission, are due to failures of communication, including miscommunication during patient care handoffs. Implementation of the I-PASS method results in decreased medical errors and preventable adverse events There are few studies that evaluate this validated method in the context of a General Surgery resident program We aim to implement the I-PASS system into the transition of care process for General Surgery residents at our institution, and to analyze of the quality of the handoff process before and after the implementation.https://jdc.jefferson.edu/patientsafetyposters/1047/thumbnail.jp

    Rapid Ring-Opening Metathesis Polymerization of Monomers Obtained from Biomass-Derived Furfuryl Amines and Maleic Anhydride

    Get PDF
    Well-controlled and extremely rapid ring-opening metathesis polymerization of unusual oxanorbornene lactam esters by Grubbs third-generation catalyst is used to prepare a range of bio-based homo- and copolymers. Bio-derived oxanorbornene lactam monomers were prepared at room temperature from maleic anhydride and secondary furfuryl amines by using a 100 % atom economical, tandem Diels–Alder lactamization reaction, followed by esterification. Several of the resulting homo- and copolymers show good control over polymer molecular weight and have narrow molecular weight distributions

    Mutual positions of the Galilean satellites of Jupiter from photometric observations during their mutual occultations and eclipses in 1997

    Full text link
    
We report the final results of the 1997 campaign of
photometric observations of the mutual phenomena of the Galilean
satellites carried out at observatories in Kazakhstan, Russia, and
Ukraine. Our results contribute substantially to the
world data bank of such observations
and will allow the model of the motion of Galilean 
satellites to be further refined. To facilitate the use of
photometric data, we reduced them by computing the planetocentric
rectangular
coordinate differences of satellite pairs for a number of instants
of time so we deduce the differences for one instant from one
observed light curve.
It is these reduced data that constitute the principal result of this work. We based our data reduction on the method which we developed in
earlier papers (Emel'yanov 1999; Emel'yanov 2000). The accuracy of observations was estimated in the process of reduction. The paper also describes the equipment used.

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps

    Distribution maps of vegetation alliances in Europe

    Get PDF
    Aim The first comprehensive checklist of European phytosociological alliances, orders and classes (EuroVegChecklist) was published by Mucina et al. (2016, Applied Vegetation Science, 19 (Suppl. 1), 3–264). However, this checklist did not contain detailed information on the distribution of individual vegetation types. Here we provide the first maps of all alliances in Europe. Location Europe, Greenland, Canary Islands, Madeira, Azores, Cyprus and the Caucasus countries. Methods We collected data on the occurrence of phytosociological alliances in European countries and regions from literature and vegetation-plot databases. We interpreted and complemented these data using the expert knowledge of an international team of vegetation scientists and matched all the previously reported alliance names and concepts with those of the EuroVegChecklist. We then mapped the occurrence of the EuroVegChecklist alliances in 82 territorial units corresponding to countries, large islands, archipelagos and peninsulas. We subdivided the mainland parts of large or biogeographically heterogeneous countries based on the European biogeographical regions. Specialized alliances of coastal habitats were mapped only for the coastal section of each territorial unit. Results Distribution maps were prepared for 1,105 alliances of vascular-plant dominated vegetation reported in the EuroVegChecklist. For each territorial unit, three levels of occurrence probability were plotted on the maps: (a) verified occurrence; (b) uncertain occurrence; and (c) absence. The maps of individual alliances were complemented by summary maps of the number of alliances and the alliance–area relationship. Distribution data are also provided in a spreadsheet. Conclusions The new map series represents the first attempt to characterize the distribution of all vegetation types at the alliance level across Europe. There are still many knowledge gaps, partly due to a lack of data for some regions and partly due to uncertainties in the definition of some alliances. The maps presented here provide a basis for future research aimed at filling these gaps
    corecore