513 research outputs found

    On perturbations of the isometric semigroup of shifts on the semiaxis

    Full text link
    We study perturbations (τ~t)t0(\tilde\tau_t)_{t\ge 0} of the semigroup of shifts (τt)t0(\tau_t)_{t\ge 0} on L2(R+)L^2(\R_+) with the property that τ~tτt\tilde\tau_t - \tau_t belongs to a certain Schatten-von Neumann class \gS_p with p1p\ge 1. We show that, for the unitary component in the Wold-Kolmogorov decomposition of the cogenerator of the semigroup (τ~t)t0(\tilde\tau_t)_{t\ge 0}, {\it any singular} spectral type may be achieved by \gS_1 perturbations. We provide an explicit construction for a perturbation with a given spectral type based on the theory of model spaces of the Hardy space H2H^2. Also we show that we may obtain {\it any} prescribed spectral type for the unitary component of the perturbed semigroup by a perturbation from the class \gS_p with p>1p>1

    Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response

    Get PDF
    Thermal analysis of aerosol size distributions provided size resolved volatility up to temperatures of 400°C during extensive flights over North America (NA) for the INTEX/ICARTT experiment in summer 2004. Biomass burning and pollution plumes identified from trace gas measurements were evaluated for their aerosol physiochemical and optical signatures. Measurements of soluble ionic mass and refractory black carbon (BC) mass, inferred from light absorption, were combined with volatility to identify organic carbon at 400°C (VolatileOC) and the residual or refractory organic carbon, RefractoryOC. This approach characterized distinct constituent mass fractions present in biomass burning and pollution plumes every 5–10 min. Biomass burning, pollution and dust aerosol could be stratified by their combined spectral scattering and absorption properties. The “nonplume” regional aerosol exhibited properties dominated by pollution characteristics near the surface and biomass burning aloft. VolatileOC included most water-soluble organic carbon. RefractoryOC dominated enhanced shortwave absorption in plumes from Alaskan and Canadian forest fires. The mass absorption efficiency of this RefractoryOC was about 0.63 m2 g−1 at 470 nm and 0.09 m2 g−1 at 530 nm. Concurrent measurements of the humidity dependence of scattering, γ, revealed the OC component to be only weakly hygroscopic resulting in a general decrease in γ with increasing OC mass fractions. Under ambient humidity conditions, the systematic relations between physiochemical properties and γ lead to a well-constrained dependency on the absorption per unit dry mass for these plume types that may be used to challenge remotely sensed and modeled optical properties

    Combining airborne gas and aerosol measurements with HYSPLIT: a visualization tool for simultaneous evaluation of air mass history and back trajectory consistency

    Get PDF
    The history of air masses is often investigated using backward trajectories to gain knowledge about processes along the air parcel path as well as possible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous evaluation of air mass history and back trajectory reliability without the need to calculate trajectory errors. <br><br> We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along free tropospheric (FT) flight tracks and profiles every 10 s. We integrate our in situ physiochemical data by color-coding each of these trajectories with its corresponding in situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories. This is particularly true when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. <br><br> The cluster-visualization tool used here reveals that most FT back trajectories with pollution signatures measured in the central equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g., the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories that penetrate deep convection in the Inter-Tropical Convergence Zone. Additionally, for the first time we show consistency of modeled precipitation along back trajectories with scavenging signatures in the aerosol measured for these trajectories

    Effects of turbulent mixing on critical behaviour in the presence of compressibility: Renormalization group analysis of two models

    Full text link
    Critical behaviour of two systems, subjected to the turbulent mixing, is studied by means of the field theoretic renormalization group. The first system, described by the equilibrium model A, corresponds to relaxational dynamics of a non-conserved order parameter. The second one is the strongly non-equilibrium reaction-diffusion system, known as Gribov process and equivalent to the Reggeon field theory. The turbulent mixing is modelled by the Kazantsev-Kraichnan "rapid-change" ensemble: time-decorrelated Gaussian velocity field with the power-like spectrum k^{-d-\xi}. Effects of compressibility of the fluid are studied. It is shown that, depending on the relation between the exponent \xi and the spatial dimension d, the both systems exhibit four different types of critical behaviour, associated with four possible fixed points of the renormalization group equations. The most interesting point corresponds to a new type of critical behaviour, in which the nonlinearity and turbulent mixing are both relevant, and the critical exponents depend on d, \xi and the degree of compressibility. For the both models, compressibility enhances the role of the nonlinear terms in the dynamical equations: the region in the d-\xi plane, where the new nontrivial regime is stable, is getting much wider as the degree of compressibility increases. In its turn, turbulent transfer becomes more efficient due to combined effects of the mixing and the nonlinear terms.Comment: 25 pages, 4 figure

    Topological A-Type Models with Flux

    Full text link
    We study deformations of the A-model in the presence of fluxes, by which we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ construction. Generically these are topological membrane models, and we show that the fluxes are related to deformations of the Courant bracket which generalize the twist by a closed 3-from HH, in the sense that satisfying the AKSZ master equation implies the integrability conditions for an almost generalized complex structure with respect to the deformed Courant bracket. In addition, the master equation imposes conditions on the fluxes that generalize dH=0dH=0. The membrane model can be defined on a large class of U(m)U(m)- and U(m)×U(m)U(m) \times U(m)-structure manifolds, including geometries inspired by (1,1)(1,1) supersymmetric σ\sigma-models with additional supersymmetries due to almost complex (but not necessarily complex) structures in the target space. Furthermore, we show that the model can be defined on three particular half-flat manifolds related to the Iwasawa manifold. When only HH-flux is turned on it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau with a closed 3-form turned on. The simplest deformation from the A-model is due to the (2,0)+(0,2)(2,0)+ (0,2) component of a non-trivial bb-field. The model is generically no longer evaluated on holomorphic maps and defines new topological invariants. Deformations due to HH-flux can be more radical, completely preventing auxiliary fields from being integrated out.Comment: 30 pages. v2: Improved Version. References added. v3: Minor changes, published in JHE

    T-duality and Generalized Kahler Geometry

    Full text link
    We use newly discovered N = (2, 2) vector multiplets to clarify T-dualities for generalized Kahler geometries. Following the usual procedure, we gauge isometries of nonlinear sigma-models and introduce Lagrange multipliers that constrain the field-strengths of the gauge fields to vanish. Integrating out the Lagrange multipliers leads to the original action, whereas integrating out the vector multiplets gives the dual action. The description is given both in N = (2, 2) and N = (1, 1) superspace.Comment: 14 pages; published version: some conventions improved, minor clarification

    ПРИМЕНЕНИЕ ИЗВЛЕЧЕННЫХ БЕЛКОВ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ В ФУНКЦИОНАЛЬНОМ И СПЕЦИАЛИЗИРОВАННОМ ПИТАНИИ

    Get PDF
    Development of functional food products technology is considered to be a prospect way for creating new food products. Such products are known to be popular among consumers. Utilization of plant proteins allows to widen and improve food assortment and quality. The article represents a review of plant proteins utilization in production of functional food. For optimization of flour confectionery chemical composition the authors utilized a method of receipts modeling. Simulation of combined products is based on the principles of food combinatorics and aims to create recipes of new types of food products on basis of methods of mathematical optimization by reasonable selection of the basic raw materials, ingredients, food additives and dietary supplements, totality of which ensures formation desired organoleptic, physical and chemical properties product as well as a predetermined level of food, biological and energy value. Modeling process of combined products recipes includes the following three stages: preparation of input data for the design, formalization requirements for the composition and properties of raw ingredients and quality final product, process modeling; product design with desired structural properties.В настоящее время приоритетным направлением в области создания новых пищевых продуктов является разработка технологий изделий функционального и специализированного назначения. Функциональные и специализированные продукты пользуются спросом среди потребителей. Применение извлеченных белков из растительного сырья обусловлено необходимостью в расширении ассортимента, улучшении качественных показателей. В статье приведен обзор результатов исследований по внедрению извлеченных белков при создании функциональных и специализированных продуктов питания. Использован метод имитационного моделирования рецептур мучных кондитерских изделий функциональной направленности с целью оптимизации их химического состава. Моделирование комбинированных продуктов питания основано на принципах пищевой комбинаторики и ставит своей целью создание рецептур новых видов пищевых продуктов на основе методов математической оптимизации путем обоснованного подбора основного сырья, ингредиентов, пищевых добавок и биологически активных добавок, совокупность которых обеспечивает формирование требуемых органолептических, физико-химических свойств продукта, а также заданный уровень пищевой, биологической и энергетической ценности. Процесс моделирования рецептур комбинированных продуктов включает в себя следующие три этапа: подготовка исходных данных на проектирование, формализация требований к составу и свойствам исходных ингредиентов и качеству готового продукта, процесс моделирования; конструирование продукта с заданными структурными свойствами
    corecore