6 research outputs found

    Melanoma cells homing to the brain : an in vitro model

    Get PDF
    We developed an in vitro contact through-feet blood brain barrier (BBB) model built using type IV collagen, rat astrocytes, and human umbilical vein endothelial cells (HUVECs) cocultured through Transwell porous polycarbonate membrane. The contact between astrocytes and HUVECs was demonstrated by electron microscopy: astrocytes endfeet pass through the 8.0 \u3bcm pores inducing HUVECs to assume a cerebral phenotype. Using this model we evaluated transmigration of melanoma cells from two different patients (M1 and M2) selected among seven melanoma primary cultures. M2 cells showed a statistically significant higher capability to pass across the in vitro BBB model, compared to M1. Expression of adhesion molecules was evaluated by flow cytometry: a statistically significant increased expression of MCAM, \u3b1v\u3b23, and CD49b was detected in M1. PCR array data showed that M2 had a higher expression of several matrix metalloproteinase proteins (MMPs) compared to M1. Specifically, data suggest that MMP2 and MMP9 could be directly involved in BBB permeability and that brain invasion by melanoma cells could be related to the overexpression of many MMPs. Future studies will be necessary to deepen the mechanisms of central nervous system invasion

    Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus

    Get PDF
    The viscoelastic properties of vertebrate connective tissues rarely undergo significant changes withinphysiological timescales, the only major exception being the reversible destiffening of the mammalianuterine cervix at the end of pregnancy. In contrast to this, the connective tissues of echinoderms (seaurchins, starfish, sea cucumbers, etc.) can switch reversibly between stiff and compliant conditions intimescales of around a second to minutes. Elucidation of the molecular mechanism underlying suchmutability has implications for the zoological, ecological and evolutionary field. Important informationcould also arise for veterinary and biomedical sciences, particularly regarding the pathological plasti-cization or stiffening of connective tissue structures. In the present investigation we analyzed aspectsof the ultrastructure and biochemistry in two representative models, the compass depressor ligamentand the peristomial membrane of the edible sea urchin Paracentrotus lividus, compared in three differentmechanical states. The results provide further evidence that the mechanical adaptability of echinodermconnective tissues does not necessarily imply changes in the collagen fibrils themselves. The higher gly-cosaminoglycan (GAG) content registered in the peristomial membrane with respect to the compassdepressor ligament suggests a diverse role of these molecules in the two mutable collagenous tissues.The possible involvement of GAG in the mutability phenomenon will need further clarification. Duringthe shift from a compliant to a standard condition, significant changes in GAG content were detected onlyin the compass depressor ligament. Similarities in terms of ultrastructure (collagen fibrillar assembling)and biochemistry (two alpha chains) were found between the two models and mammalian collagen.Nevertheless, differences in collagen immunoreactivity, alpha chain migration on SDS-PAGE and BLASTalignment highlighted the uniqueness of sea urchin collagen with respect to mammalian collagen

    Measles inclusion-body encephalitis : neuronal phosphorylated tau protein is present in the biopsy but not in the autoptic specimens of the same patient

    No full text
    Tauopathies are sporadic or familial neurodegenerative diseases characterized by the accumulation of phosphorylated tau in neurons and glial cells and include encephalitis related to measles virus such as subacute sclerosing panencephalitis. We describe a 45-year-old woman, with a history of lymphoma treated with immunosuppressant therapy who underwent an open biopsy of the right frontal cortex for a suspect of encephalitis, and died 4 days later. The neuropathological assessment on the bioptic sample revealed edema, severe gliosis and microglial activation, with lymphomonocytic perivascular cuffing and neurons containing both nuclear and cytoplasmic eosinofilic inclusions that ultrastructurally appeared as tubular and curvilinear non-membrane-bound 12-18 nm structures, leading to the diagnosis of measles inclusion-bodies encephalitis. The biopsy specimen showed several cortical neurons with intense perikaryal immunoreactivity for anti-tau antibodies recognizing phosphorylated epitopes while on autoptic specimens no phosphorylated tau immunoreactivity was detected. Our findings suggest that in specific conditions biopsy-derived human tau may be phosphorylated at sites that may result not phosphorylated in autopsy-derived specimens, most likely due to postmortem dephosphorylation

    Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with CLN6 mutations

    No full text
    OBJECTIVES: To describe the clinical and neurophysiologic patterns of patients with neuronal ceroid lipofuscinoses associated with CLN6 mutations. METHODS: We reviewed the features of 11 patients with different ages at onset. RESULTS: Clinical disease onset occurred within the first decade of life in 8 patients and in the second and third decades in 3. All children presented with progressive cognitive regression associated with ataxia and pyramidal and extrapyramidal signs. Recurrent seizures, visual loss, and myoclonus were mostly reported after a delay from onset; 7 children were chairbound and had severe dementia less than 4 years from onset. One child, with onset at 8 years, had a milder course. Three patients with a teenage/adult onset presented with a classic progressive myoclonic epilepsy phenotype that was preceded by learning disability in one. The EEG background was slow close to disease onset in 7 children, and later showed severe attenuation; a photoparoxysmal response (PPR) was present in all. The 3 teenage/adult patients had normal EEG background and an intense PPR. Early attenuation of the electroretinogram was seen only in children with onset younger than 5.5 years. Somatosensory evoked potentials were extremely enlarged in all patients. CONCLUSIONS: In all patients, multifocal myoclonic jerks and seizures were a key feature, but myoclonic seizures were an early and prominent sign in the teenage/adult form only. Conversely, the childhood-onset form was characterized by initial and severe cognitive impairment coupled with electroretinogram and EEG attenuation. Cortical hyperexcitability, shown by the PPR and enlarged somatosensory evoked potentials, was a universal feature

    Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant.

    Get PDF
    BACKGROUND: We studied a family including two half-siblings, sharing the same mother, affected by slowly progressive, adult-onset neurological syndromes. In spite of the diversity of the clinical features, characterized by a mild movement disorder with cognitive impairment in the elder patient, and severe motor-neuron disease (MND) in her half-brother, the brain Magnetic Resonance Imaging (MRI) features were compatible with adult-onset Alexander's disease (AOAD), suggesting different expression of the same, genetically determined, condition. METHODS: Since mutations in the alpha isoform of glial fibrillary acidic protein, GFAP-\u3b1, the only cause so far known of AOAD, were excluded, we applied exome Next Generation Sequencing (NGS) to identify gene variants, which were then functionally validated by molecular characterization of recombinant and patient-derived cells. RESULTS: Exome-NGS revealed a mutation in a previously neglected GFAP isoform, GFAP-\u3f5, which disrupts the GFAP-associated filamentous cytoskeletal meshwork of astrocytoma cells. To shed light on the different clinical features in the two patients, we sought for variants in other genes. The male patient had a mutation, absent in his half-sister, in X-linked histone deacetylase 6, a candidate MND susceptibility gene. CONCLUSIONS: Exome-NGS is an unbiased approach that not only helps identify new disease genes, but may also contribute to elucidate phenotypic expression

    The diagnostic challenge of Divry van Bogaert and Sneddon Syndrome : report of three cases and literature review

    No full text
    Divry van Bogaert Syndrome (DBS) is a familial juvenile-onset disorder characterized by livedo racemosa, white matter disease, dementia, epilepsy and angiographic finding of "cerebral angiomatosis". A similar syndrome including livedo racemosa and cerebrovascular disease, often associated with anticardiolipin antibodies, has been described as Sneddon Syndrome (SS) highlighting the question whether these two conditions have to be considered different entities or indeed different features of a unique syndrome. Herein, we report the clinical, neuroradiological, histopathological findings and follow up of three cases diagnosed as Divry-van Bogaert Syndrome, including an updated review of literature of both DBS and SS cases. Our findings support the assumption that DBS and SS are different disease entities. DBS is characterized by the typical angiographic feature of angiomatosis, a hereditary trait and a juvenile onset of cognitive impairment and leukoaraiosis, whereas SS has less severe manifestations of cerebrovascular disease associated with livedo racemosa but without the characteristic cerebral angiography. The report of our cases and the literature review underline the necessity of a detailed work-up and the collection of larger series to better clarify the DBS and SS phenotype and course
    corecore