283 research outputs found

    Dynamic centrifuge testing to assess liquefaction potential

    Get PDF
    A set of centrifuge tests has been carried out at ISMGEO (Italy) laboratory on models of a liquefiable soil. A natural sand from the Emilia-Romagna region in Italy was used in the tests, in order to reproduce typical ground conditions where liquefaction occurred during the seismic sequence of 2012. The models were instrumented with miniaturised accelerometers and with pore pressure and displacement transducers. Spectrum-compatible acceleration time histories were applied at the base of the model. In this way triggering of the liquefaction was detected and post-liquefaction settlements were evaluated. The paper describes with the tests carried out on free-field models. Further tests are currently ongoing to assess the seismic response of simple model structures lying on liquefiable ground. The testing programme, funded within the H2020 research project LIQUEFACT, is aimed at an experimental verification of ground improvement techniques used to mitigate the liquefaction susceptibility of fully saturated loose sands

    An analysis of pressuremeter holding tests

    Full text link

    Insights into the Hydromechanical Behavior of a River Embankment through Physical and Numerical Modeling

    Get PDF
    In the framework of a climate change scenario and growing land urbanization, a reliable assessment of river embankment safety conditions represents a key aspect to enhance the resilience of these critical infrastructures and support the development of design guidelines and flood risk reduction strategies. This paper aims at contributing to a deeper understanding of the effect of hydraulic loadings on the hydromechanical behavior of unsaturated river embankments through physical and numerical modeling. To fulfill this scope, two centrifuge tests were conducted on a small-scale physical model, representative for the tributary bank systems of the main river in Italy, the Po River. The model embankment featured a trapezoidal-shaped cross section and was made of a compacted silty sand mixture, overlying a homogeneous clayey silt foundation layer. A comprehensive laboratory investigation was carried out to estimate the geotechnical properties of both materials and the main outcomes are herein presented. To monitor the model response to the imposed hydraulic boundary conditions, the middle section of the embankment was extensively instrumented with miniaturized tensiometers, pore pressure transducers, and displacement sensors. Subsequently, a coupled flow-deformation finite-element (FE) model was set up to replicate the two centrifuge tests. Once validated, the numerical model was adopted to study the performance of an embankment under realistic flood scenarios as its hydraulic characteristics varied. The development of this numerical model made it possible to create a predictive tool for the assessment of the hydromechanical behavior of existing river embankments

    Analysis of transient seepage through a river embankment by means of centrifuge modelling

    Get PDF
    Earthen river embankments are typically in unsaturated conditions during their lifetime and the degree of saturation within their bodies may vary significantly throughout the year, due to seasonalfluctuations of the river stage, as well as infiltrations of meteoric precipitation and evapotranspiration phenomena. Given the significant effects of partial saturation on the hydro-mechanical behaviour of soils, realistic assumptions on the actual water content distribution inside the embankments are essential forproperly modelling their response to hydraulic loadings. In this framework, centrifuge modelling is a useful tool to get insights into the evolution of saturation conditions of a water retaining structure during flood events. It allows for the direct observation of the groundwater flow process, which is hardly detectable at the prototype scale, enabling, at the same time, the validation and calibration of predictive numerical tools.In this paper, the results of a centrifuge test carried out on small-scale physical model of a compacted silty clayey sand embankment subjected to a simulated high-water event, at the enhanced gravity of 50-g, are presented and discussed. The physical model was carefully instrumented with potentiometers, miniaturized pore pressure transducers and tensiometers. Pore pressures and suctions measured during the experiment showed that the stationary flow conditions were reached only after an unrealistic hydrometric peak persistence. It therefore emerges that, for the design and/or the assessment of the safety conditions of a river embankment similar to the one tested, the simplified hypothesis of a steady-state seepage, in equilibrium with the maximum river stage expected could result, in many cases, an excessively conservative assumption

    Estimating afforestation area using landsat time series and photointerpreted datasets

    Get PDF
    Afforestation processes, natural and anthropogenic, involve the conversion of other land uses to forest, and they represent one of the most important land use transformations, influencing numerous ecosystem services. Although remotely sensed data are commonly used to monitor forest disturbance, only a few reported studies have used these data to monitor afforestation. The objectives of this study were two fold: (1) to develop and illustrate a method that exploits the 1985–2019 Landsat time series for predicting afforestation areas at 30 m resolution at the national scale, and (2) to estimate afforestation areas statistically rigorously within Italian administrative regions and land elevation classes. We used a Landsat best-available-pixel time series (1985–2019) to calculate a set of temporal predictors that, together with the random forests prediction technique, facilitated construction of a map of afforested areas in Italy. Then, the map was used to guide selection of an estimation sample dataset which, after a complex photointerpretation phase, was used to estimate afforestation areas and associated confidence intervals. The classification approach achieved an accuracy of 87%. At the national level, the afforestation area between 1985 and 2019 covered 2.8 ± 0.2 million ha, corresponding to a potential C-sequestration of 200 million t. The administrative region with the largest afforested area was Sardinia, with 260,670 ± 58,522 ha, while the smallest area of 28,644 ± 12,114 ha was in Valle d’Aosta. Considering elevation classes of 200 m, the greatest afforestation area was between 400 and 600 m above sea level, where it was 549,497 ± 84,979 ha. Our results help to understand the afforestation process in Italy between 1985 and 2019 in relation to geographical location and altitude, and they could be the basis of further studies on the species composition of afforestation areas and land management conditions

    Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low <it>p</it>-value. However, the interpretation of each single <it>p</it>-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, <it>game theory </it>has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions.</p> <p>Results</p> <p>In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called <it>Comparative Analysis of Shapley value </it>(shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability.</p> <p>Conclusion</p> <p>CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways.</p

    Tau association with synaptic vesicles causes presynaptic dysfunction

    Get PDF
    Tau is implicated in more than 20 neurodegenerative diseases, including Alzheimer's disease. Under pathological conditions, Tau dissociates from axonal microtubules and missorts to pre- and postsynaptic terminals. Patients suffer from early synaptic dysfunction prior to Tau aggregate formation, but the underlying mechanism is unclear. Here we show that pathogenic Tau binds to synaptic vesicles via its N-terminal domain and interferes with presynaptic functions, including synaptic vesicle mobility and release rate, lowering neurotransmission in fly and rat neurons. Pathological Tau mutants lacking the vesicle binding domain still localize to the presynaptic compartment but do not impair synaptic function in fly neurons. Moreover, an exogenously applied membrane-permeable peptide that competes for Tau-vesicle binding suppresses Tau-induced synaptic toxicity in rat neurons. Our work uncovers a presynaptic role of Tau that may be part of the early pathology in various Tauopathies and could be exploited therapeutically.status: publishe
    corecore