38,543 research outputs found

    Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles

    Full text link
    This review is devoted to the problem of thermalization in a small isolated conglomerate of interacting constituents. A variety of physically important systems of intensive current interest belong to this category: complex atoms, molecules (including biological molecules), nuclei, small devices of condensed matter and quantum optics on nano- and micro-scale, cold atoms in optical lattices, ion traps. Physical implementations of quantum computers, where there are many interacting qubits, also fall into this group. Statistical regularities come into play through inter-particle interactions, which have two fundamental components: mean field, that along with external conditions, forms the regular component of the dynamics, and residual interactions responsible for the complex structure of the actual stationary states. At sufficiently high level density, the stationary states become exceedingly complicated superpositions of simple quasiparticle excitations. At this stage, regularities typical of quantum chaos emerge and bring in signatures of thermalization. We describe all the stages and the results of the processes leading to thermalization, using analytical and massive numerical examples for realistic atomic, nuclear, and spin systems, as well as for models with random parameters. The structure of stationary states, strength functions of simple configurations, and concepts of entropy and temperature in application to isolated mesoscopic systems are discussed in detail. We conclude with a schematic discussion of the time evolution of such systems to equilibrium.Comment: 69 pages, 31 figure

    An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux

    Full text link
    In the steady Couette flow of a granular gas the sign of the heat flux gradient is governed by the competition between viscous heating and inelastic cooling. We show from the Boltzmann equation for inelastic Maxwell particles that a special class of states exists where the viscous heating and the inelastic cooling exactly compensate each other at every point, resulting in a uniform heat flux. In this state the (reduced) shear rate is enslaved to the coefficient of restitution α\alpha, so that the only free parameter is the (reduced) thermal gradient ϵ\epsilon. It turns out that the reduced moments of order kk are polynomials of degree k2k-2 in ϵ\epsilon, with coefficients that are nonlinear functions of α\alpha. In particular, the rheological properties (k=2k=2) are independent of ϵ\epsilon and coincide exactly with those of the simple shear flow. The heat flux (k=3k=3) is linear in the thermal gradient (generalized Fourier's law), but with an effective thermal conductivity differing from the Navier--Stokes one. In addition, a heat flux component parallel to the flow velocity and normal to the thermal gradient exists. The theoretical predictions are validated by comparison with direct Monte Carlo simulations for the same model.Comment: 16 pages, 4 figures,1 table; v2: minor change

    A Cartan-Eilenberg approach to Homotopical Algebra

    Get PDF
    In this paper we propose an approach to homotopical algebra where the basic ingredient is a category with two classes of distinguished morphisms: strong and weak equivalences. These data determine the cofibrant objects by an extension property analogous to the classical lifting property of projective modules. We define a Cartan-Eilenberg category as a category with strong and weak equivalences such that there is an equivalence between its localization with respect to weak equivalences and the localised category of cofibrant objets with respect to strong equivalences. This equivalence allows us to extend the classical theory of derived additive functors to this non additive setting. The main examples include Quillen model categories and functor categories with a triple, in the last case we find examples in which the class of strong equivalences is not determined by a homotopy relation. Among other applications, we prove the existence of filtered minimal models for \emph{cdg} algebras over a zero-characteristic field and we formulate an acyclic models theorem for non additive functors

    Stochastic Model in the Kardar-Parisi-Zhang Universality With Minimal Finite Size Effects

    Full text link
    We introduce a solid on solid lattice model for growth with conditional evaporation. A measure of finite size effects is obtained by observing the time invariance of distribution of local height fluctuations. The model parameters are chosen so that the change in the distribution in time is minimum. On a one dimensional substrate the results obtained from the model for the roughness exponent α\alpha from three different methods are same as predicted for the Kardar-Parisi-Zhang (KPZ) equation. One of the unique feature of the model is that the α\alpha as obtained from the structure factor S(k,t)S(k,t) for the one dimensional substrate growth exactly matches with the predicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained results for this model on a 2 and 3 dimensional substrates.Comment: 8 pages, 7 figures, accepted in Phys. Rev.

    Impurity in a granular gas under nonlinear Couette flow

    Full text link
    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors [Vega Reyes F et al. 2007 Phys. Rev. E 75 061306]. Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier-Stokes domain.Comment: 23 pages, 11 figures; v2: Preliminary DSMC results from the Boltzmann equation included, Fig. 11 is ne
    corecore