28 research outputs found

    ΠœΠ•Π’ΠžΠ”Π˜ΠšΠ ΠŸΠžΠ‘Π’Π ΠžΠ•ΠΠ˜Π― ΠŸΠ ΠžΠ€Π˜Π›Π― ΠŸΠžΠŸΠ•Π Π•Π§ΠΠžΠ“Πž Π‘Π•Π§Π•ΠΠ˜Π― Π”Π˜Π‘ΠšΠ

    Get PDF
    A choice of the sizes and form of a disk is made for the set operation conditions on the basis of geometrical ratios between parameters of a disk and their admissible values developed by practice. Except the crumbling and turning ability of a disk the add factors influencing on its geometrical and power parameters are non-crumple condition of a vertical wall of a furrow and steady raising of layer on a curvilinear surface of operation sector. Basic data for construction horizontal, cross-vertical, longitudinal-vertical projections is diameter of a disk, an angle of attack, running depth. Depth of the course images a chord of disk dip on cross-vertical and longitudinal-vertical projections of a disk. The disk sphere which excludes crumple of a vertical wall of a furrow at its movement is designated on the horizontal projection. Criterion of disk efficiency a is possible soil sliding along a curve of longitudinal-vertical projection within limits of the lowermost point and a point excluding crumple of the furrow vertical wall and located on a chord of deep. The parameter of a curve of possible sliding can be defined taking into account that the sum of multiplications of tangent efforts to a projection of a trajectory of the movement of an elementary platform less than zero. Taking into account the received value we can construction the sliding curve on the longitudinal-vertical projection in a zone of operating surface. Points of intersection of the sliding curve with the generating lines of longitudinal-vertical projection are moved by horizontal transfer on a piece of an interval of the horizontal projection. On three points we create a profile of a disk on height of a placement of the generating lines. The disk profile with the spherical or flat bottom should be create at the level of generating lines of cross-vertical projection taking into account the intervals placed on a perpendicular to the center of diameter of a disk of a horizontal projection.Π Π°Π·ΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ„ΠΎΡ€ΠΌΡƒ диска для Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… условий Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΏΠΎΡ‡Π²Ρ‹ Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Π½Π° основании гСомСтричСских ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ диска ΠΈ допустимыми значСниями, Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌΠΈ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠΉ. Установили, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΠΎΠΌΠ΅ ΠΊΡ€ΠΎΡˆΠ°Ρ‰Π΅ΠΉ ΠΈ ΠΎΠ±ΠΎΡ€Π°Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ способности диска, ΠΊ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌ, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠΌ Π½Π° Π΅Π³ΠΎ гСомСтричСскиС ΠΈ энСргСтичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹, Π½ΡƒΠΆΠ½ΠΎ отнСсти условиС нСсмятия Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ стСнки Π±ΠΎΡ€ΠΎΠ·Π΄Ρ‹ ΠΈ устойчивый подъСм пласта ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ повСрхности Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ сСктора. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ исходными Π΄Π°Π½Π½Ρ‹ΠΌΠΈ для построСния Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ, ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ, ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ диска, ΡƒΠ³ΠΎΠ» Π°Ρ‚Π°ΠΊΠΈ, Π³Π»ΡƒΠ±ΠΈΠ½Π° Ρ…ΠΎΠ΄Π°. Π“Π»ΡƒΠ±ΠΈΠ½Π° Ρ…ΠΎΠ΄Π° ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π΅Ρ‚ Ρ…ΠΎΡ€Π΄Ρƒ погруТСния диска Π½Π° ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ проСкциях диска. На Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ обозначаСтся сфСра диска, которая ΠΈΡΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ смятиС Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ стСнки Π±ΠΎΡ€ΠΎΠ·Π΄Ρ‹ ΠΏΡ€ΠΈ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅ΠΌ работоспособности диска слуТит Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ скольТСниС ΠΏΠΎΡ‡Π²Ρ‹ вдоль ΠΊΡ€ΠΈΠ²ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… самой Π½ΠΈΠΆΠ½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈΡΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π΅ΠΉ смятиС Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ стСнки Π±ΠΎΡ€ΠΎΠ·Π΄Ρ‹ ΠΈ располоТСнной Π½Π° Ρ…ΠΎΡ€Π΄Π΅ погруТСния. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ ΠΊΡ€ΠΈΠ²ΠΎΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ скольТСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ сумма ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… усилий Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ двиТСния элСмСнтарной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠΈ мСньшС нуля. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ значСния Π½Π° ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π² Π·ΠΎΠ½Π΅ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ повСрхности построСна кривая скольТСния. Π’ΠΎΡ‡ΠΊΠΈ пСрСсСчСния ΠΊΡ€ΠΈΠ²ΠΎΠΉ скольТСния с ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΌΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ пСрСносом Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ. По Ρ‚Ρ€Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ осущСствляСтся построСниС Π΄ΡƒΠ³ профиля диска ΠΏΠΎ высотС располоТСния ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…. ΠŸΡ€ΠΎΡ„ΠΈΠ»ΡŒ диска со сфСричСским ΠΈΠ»ΠΈ плоским Π΄Π½ΠΈΡ‰Π΅ΠΌ строится Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ², располоТСнных Π½Π° пСрпСндикулярС ΠΊ Ρ†Π΅Π½Ρ‚Ρ€Ρƒ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° диска Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ профиля ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния диска Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π΄Π²ΡƒΡ… условий: нСсмятия ΠΏΠΎΡ‡Π²Ρ‹ Π² Π·ΠΎΠ½Π΅ Ρ…ΠΎΡ€Π΄Ρ‹ погруТСния ΠΈ возмоТности обСспСчСния Π΅Π΅ скольТСния. Данная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° позволяСт ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ диск с плоским ΠΈ сфСричСским диско

    Electrodeposited Co93.2P6.8 nanowire arrays with core-shell microstructure and perpendicular magnetic anisotropy

    Get PDF
    We demonstrate the formation of an unusual core-shell microstructure in Co93.2P6.8 nanowires electrodeposited by alternating current (ac) in an alumina template. By means of transmission electron microscopy, it is shown that the coaxial-like nanowires contain amorphous and crystalline phases. Analysis of the magnetization data for Co-P alloy nanowires indicates that a ferromagnetic core is surrounded by a weakly ferromagnetic or non-magnetic phase, depending on the phosphor content. The nanowire arrays exhibit an easy axis of magnetization parallel to the wire axis. For this peculiar composition and structure, the coercivity values are 2380 ± 50 and 1260 ± 35 Oe, parallel and perpendicular to the plane directions of magnetization, respectively. This effect is attributed to the core-shell structure making the properties and applications of these nanowires similar to pure cobalt nanowires with an improved perpendicular anisotropy. <br/

    Анализ тягового сопротивлСния элСмСнтов Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€ΠΎΠΈΠ΄Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса

    Get PDF
    One of the directions of decrease in power consumption of soil cultivation is change of a form and parameters of elements of a plow body like a plough share and a moldboard. Known mathematical expressions for determination of traction resistance of plows do not allow to consider various degree of loading of different parts of moldboard. The offered technique of definition of a horizontal component of traction resistance of a moldboard considers this difference in loading of a plow body surface. The component of surface resistance was determined due to summation of resistances of elementary horizontal components of a moldboard, with use of crumbling curves of a longitudinally vertical projection of the plow body. These curves are formed owing to horizontal transfer of points of intersection of secants of tcutting planes parallel to a furrow wall. If the deformator is completely digged in the soil, but there is no its turn and movement, then an expression for determination of work intensity of the active working element at penetration to the soil allows to calculate traction effort of an elementary horizontal component of moldboard resistance. The received expression can be used at approximation of curves of a longitudinally vertical projection of the plow body where the breast and median part of a moldboard are most loaded. Degree of loading of an elementary horizontal component of a moldboard is formed by the normal tension value which is comparable to deformation coefficient. The resistance component for soil layer ejecting considers the plowing depth, furrow width, speed of the plowing unit, density of the deformable soil, average value of a tilt angle of generators of a moldboard surface to a furrow wall. If moisture content in loamy soil is about 21 percent, plowing depth equals 0.20 m then the traction resistance of a 0.35 m wide moldboard will amount 1035 N.Одним ΠΈΠ· Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ сниТСния энСргоСмкости процСсса ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ являСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² элСмСнтов ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса - Π»Π΅ΠΌΠ΅Ρ…Π° ΠΈ ΠΎΡ‚Π²Π°Π»Π°. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ извСстныС матСматичСскиС выраТСния для опрСдСлСния тягового сопротивлСния ΠΏΠ»ΡƒΠ³ΠΎΠ². УстановлСно, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΡƒΡŽ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ нагруТСнности ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… участков ΠΎΡ‚Π²Π°Π»Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ сопротивлСния ΠΎΡ‚Π²Π°Π»Π°, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π°Ρ эту Ρ€Π°Π·Π½ΠΈΡ†Ρƒ Π² нагруТСнности повСрхности ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса. Π‘ΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ сопротивлСния повСрхности ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ суммированиСм сопротивлСний элСмСнтарных Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… ΠΎΡ‚Π²Π°Π»Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΊΡ€ΠΈΠ²Ρ‹Π΅ ΠΊΡ€ΠΎΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ эти ΠΊΡ€ΠΈΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‚ΡΡ вслСдствиС Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ пСрСноса Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния сСкущих плоскостСй, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… стСнкС Π±ΠΎΡ€ΠΎΠ·Π΄Ρ‹. Выявили, Ρ‡Ρ‚ΠΎ Ссли Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΎΡ€ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π·Π°Π³Π»ΡƒΠ±Π»Π΅Π½ Π² ΠΏΠΎΡ‡Π²Ρƒ, Π½ΠΎ ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π΅Π³ΠΎ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для опрСдСлСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΡ€ΠΈ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠΈ Π² ΠΏΠΎΡ‡Π²Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ ΠΎΡ€Π³Π°Π½Π° позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ тяговоС усилиС элСмСнтарной Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ сопротивлСния ΠΎΡ‚Π²Π°Π»Π°. Показали, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ аппроксимации ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ-Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса, Π³Π΄Π΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π³Ρ€ΡƒΠ΄ΡŒ ΠΈ срСдинная Ρ‡Π°ΡΡ‚ΡŒ ΠΎΡ‚Π²Π°Π»Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ нагруТСнности элСмСнтарной Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ ΠΎΡ‚Π²Π°Π»Π° формируСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ напряТСния, которая сопоставима с коэффициСнтом Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ. Π‘ΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ сопротивлСния Π½Π° отбрасываниС пласта ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π΅Ρ‚ Π³Π»ΡƒΠ±ΠΈΠ½Ρƒ вспашки, ΡˆΠΈΡ€ΠΈΠ½Ρƒ Π·Π°Ρ…Π²Π°Ρ‚Π° ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ…ΠΎΡ‚Π½ΠΎΠ³ΠΎ Π°Π³Ρ€Π΅Π³Π°Ρ‚Π°, ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ ΠΏΠΎΡ‡Π²Ρ‹, срСднСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… повСрхности ΠΎΡ‚Π²Π°Π»Π° ΠΊ стСнкС Π±ΠΎΡ€ΠΎΠ·Π΄Ρ‹. Показали, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ влаТности суглинистой ΠΏΠΎΡ‡Π²Ρ‹ ΠΎΠΊΠΎΠ»ΠΎ 21 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π°, Π³Π»ΡƒΠ±ΠΈΠ½Π΅ вспашки 0,20 ΠΌΠ΅Ρ‚Ρ€Π° тяговоС сопротивлСниС ΠΎΡ‚Π²Π°Π»Π° ΠΏΠ»ΡƒΠΆΠ½ΠΎΠ³ΠΎ корпуса ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ Π·Π°Ρ…Π²Π°Ρ‚Π° 0,35 ΠΌΠ΅Ρ‚Ρ€Π° составит 1035 Н

    Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography

    Get PDF
    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for lightweight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze

    ANALYSIS OF TRACTIVE RESISTANCE OF GENERAL PLOW BODY ELEMENTS

    No full text
    One of the directions of decrease in power consumption of soil cultivation is change of a form and parameters of elements of a plow body like a plough share and a moldboard. Known mathematical expressions for determination of traction resistance of plows do not allow to consider various degree of loading of different parts of moldboard. The offered technique of definition of a horizontal component of traction resistance of a moldboard considers this difference in loading of a plow body surface. The component of surface resistance was determined due to summation of resistances of elementary horizontal components of a moldboard, with use of crumbling curves of a longitudinally vertical projection of the plow body. These curves are formed owing to horizontal transfer of points of intersection of secants of tcutting planes parallel to a furrow wall. If the deformator is completely digged in the soil, but there is no its turn and movement, then an expression for determination of work intensity of the active working element at penetration to the soil allows to calculate traction effort of an elementary horizontal component of moldboard resistance. The received expression can be used at approximation of curves of a longitudinally vertical projection of the plow body where the breast and median part of a moldboard are most loaded. Degree of loading of an elementary horizontal component of a moldboard is formed by the normal tension value which is comparable to deformation coefficient. The resistance component for soil layer ejecting considers the plowing depth, furrow width, speed of the plowing unit, density of the deformable soil, average value of a tilt angle of generators of a moldboard surface to a furrow wall. If moisture content in loamy soil is about 21 percent, plowing depth equals 0.20 m then the traction resistance of a 0.35 m wide moldboard will amount 1035 N
    corecore