13 research outputs found

    Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    Full text link
    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    A boundary-based net-exchange Monte Carlo method for absorbing and scattering thick media

    No full text
    International audienceA boundary-based net-exchange Monte Carlo method was introduced in [1] that allows to bypass the difficulties encountered by standard Monte Carlo algorithms in the limit of optically thick absorption (and/or for quasi-isothermal configurations). With the present paper, this method is extended to scattering media. Developments are fully 3D, but illustrations are presented for plane parallel configuration. Compared to standard Monte Carlo algorithms, convergence qualities have been improved over a wide range of absorption and scattering optical thicknesses. The proposed algorithm still encounters a convergence difficulty in the case of optically thick, highly scattering media

    Null-collision meshless Monte-Carlo - A new reverse Monte-Carlo algorithm designed for laser-source emission in absorbing/scattering inhomogeneous media

    No full text
    International audienceOver recent decades, numerous studies in a myriad of research fields have improved the efficiency of the Monte-Carlo method to solve radiative transfers in heterogeneous media. The formalization of the concept of path integral formulation on which the construction of the random trajectories is based has made it possible to lay down a convenient framework to investigate sampling strategies and to design adapted low-variance algorithms. Our study focuses on the particular case of laser emission, which corresponds to a spatially-localized source emitting in a low solid angle, which partially illuminates the environment. In this case, the intrinsic characteristics of the laser emission cause problems of convergence with a Monte-Carlo method due to the difficulty in statistically linking sensors (probe points) to sources. This paper proposes, using integral formulation and a Null-Collision Algorithm (NCA), a practicable and simply implementable method to avoid such constraints. The intensity is broken down into a direct and a scattered term (local estimate technique). Then, a reworking of the various integral terms makes it possible to propose a complete algorithm adapted to a collimated source partially illuminating the studied scene. Non-zero contributions are brought more continuously to the Monte-Carlo weight and variance is strongly reduced. The entire methodology, from integral formulation to algorithmic interpretation, is presented step by step. For validation purposes, a new reverse and optimized Monte-Carlo algorithm is compared with an analogous Monte-Carlo for estimation of flux absorbed by a wall in an academic configuration, which ensures benchmark results. As the current proposed algorithm is highly suitable for building computer-generated images (probe calculation), the propagation of light due to laser emission through inhomogeneous environments is then illustrated by the construction of such images. This new tool provides useful support for experimental characterization of the radiative behaviour of particles
    corecore