30 research outputs found

    Neutron powder diffraction study of NaMn2_2O4_4 and Li0.92_{0.92}Mn2_2O4_4: New insights on spin-charge-orbital ordering

    Get PDF
    The high-pressure synthesized quasi-one-dimensional compounds NaMn2_2O4_4 and Li0.92_{0.92}Mn2_2O4_4 are both antiferromagnetic insulators, and here their atomic and magnetic structures were investigated using neutron powder diffraction. The present crystal structural analyses of NaMn2O4 reveal that Mn3+/Mn4+ charge-ordering state exist even at low temperature (down to 1.5 K). It is evident from one of the Mn sites shows a strongly distorted Mn3+ octahedra due to the Jahn-Teller effect. Above TN = 39 K, a two-dimensional short-range correlation is observed, as indicated by an asymmetric diffuse scattering. Below TN, two antiferromagnetic transitions are observed (i) a commensurate long-range Mn3+ spin ordering below 39 K, and (ii) an incommensurate Mn4+ spin ordering below 10 K. The commensurate magnetic structure (kC = 0.5, -0.5, 0.5) follows the magnetic anisotropy of the local easy axes of Mn3+, while the incommensurate one shows a spin-density-wave order with kIC = (0,0,0.216). For Li0.92_{0.92}Mn2_2O4_4, on the other hand, absence of a long-range spin ordered state down to 1.5 K is confirmed.Comment: 11 pages, 8 figure

    Crystal structure and the magnetic state of Pr0,5Sr0,5Co0,5Fe0,5O3

    No full text

    Temperature evolution of the crystal structure of Bi1 xPrxFeO3 solid solutions

    No full text
    The crystal structure of solid solutions in the Bi<sub>1 − x</sub> Pr <sub>x</sub> FeO<sub>3</sub> system near the structural transition between the rhombohedral and orthorhombic phases (0.125 ≤ x ≤ 0.15) has been studied. The structural phase transitions induced by changes in the concentration of praseodymium ions and in the temperature have been investigated using X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. It has been established that the sequence of phase transformations in the crystal structure of Bi<sub>1 − x</sub> Pr <sub>x</sub> FeO<sub>3</sub> solid solutions with variations in the temperature differs significantly from the evolution of the crystal structure of the BiFeO3 compounds with the substitution of other rare-earth elements for bismuth ions. The regions of the existence of the single-phase structural state and regions of the coexistence of the structural phases have been determined in the investigation of the crystal structure of the Bi<sub>1 − x</sub> Pr <sub>x</sub> FeO<sub>3</sub> solid solutions. A three-phase structural state has been revealed for the solid solution with x = 0.125 at temperatures near 400°C. The specific features of the structural phase transitions of the compounds in the vicinity of the morphotropic phase boundary have been determined by analyzing the obtained results. It has been found that the solid solutions based on bismuth ferrite demonstrate a significant improvement in their physical properties
    corecore