140,513 research outputs found
Decays of tensor mesons and the tensor glueball in an effective field approach
The strong and electromagnetic decays of the ground-state tensor mesons are
studied in an effective field approach. A fit to the well-known experimental
data is performed. The decay ratios of the tensor glueball are evaluated and
possible candidates are discussed.Comment: 12 page
Uniform materials and the multiplicative decomposition of the deformation gradient in finite elasto-plasticity
In this work we analyze the relation between the multiplicative decomposition
of the deformation gradient as a product
of the elastic and plastic factors and the theory of uniform materials. We
prove that postulating such a decomposition is equivalent to having a uniform
material model with two configurations - total and the inelastic
. We introduce strain tensors characterizing different types of
evolutions of the material and discuss the form of the internal energy and that
of the dissipative potential. The evolution equations are obtained for the
configurations and the material metric .
Finally the dissipative inequality for the materials of this type is
presented.It is shown that the conditions of positivity of the internal
dissipation terms related to the processes of plastic and metric evolution
provide the anisotropic yield criteria
On Flux Rope Stability and Atmospheric Stratification in Models of Coronal Mass Ejections Triggered by Flux Emergence
Flux emergence is widely recognized to play an important role in the
initiation of coronal mass ejections. The Chen-Shibata (2000) model, which
addresses the connection between emerging flux and flux rope eruptions, can be
implemented numerically to study how emerging flux through the photosphere can
impact the eruption of a pre-existing coronal flux rope. The model's
sensitivity to the initial conditions and reconnection micro-physics is
investigated with a parameter study. In particular, we aim to understand the
stability of the coronal flux rope in the context of X-point collapse and the
effects of boundary driving in both unstratified and stratified atmospheres. In
the absence of driving, we assess the behavior of waves in the vicinity of the
X-point. With boundary driving applied, we study the effects of reconnection
micro-physics and atmospheric stratification on the eruption. We find that the
Chen-Shibata equilibrium can be unstable to an X-point collapse even in the
absence of driving due to wave accumulation at the X-point. However, the
equilibrium can be stabilized by reducing the compressibility of the plasma,
which allows small-amplitude waves to pass through the X-point without
accumulation. Simulations with the photospheric boundary driving evaluate the
impact of reconnection micro-physics and atmospheric stratification on the
resulting dynamics: we show the evolution of the system to be determined
primarily by the structure of the global magnetic fields with little
sensitivity to the micro-physics of magnetic reconnection; and in a stratified
atmosphere, we identify a novel mechanism for producing quasi-periodic behavior
at the reconnection site behind a rising flux rope as a possible explanation of
similar phenomena observed in solar and stellar flares.Comment: Submitted Feb 28, 2014 to, accepted Aug 14, 2014 by Astronomy &
Astrophysics. 13 pages, 10 figures, 2 table
Hardness of Graph Pricing through Generalized Max-Dicut
The Graph Pricing problem is among the fundamental problems whose
approximability is not well-understood. While there is a simple combinatorial
1/4-approximation algorithm, the best hardness result remains at 1/2 assuming
the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate
within a factor better than 1/4 under the UGC, so that the simple combinatorial
algorithm might be the best possible. We also prove that for any , there exists such that the integrality gap of
-rounds of the Sherali-Adams hierarchy of linear programming for
Graph Pricing is at most 1/2 + .
This work is based on the effort to view the Graph Pricing problem as a
Constraint Satisfaction Problem (CSP) simpler than the standard and complicated
formulation. We propose the problem called Generalized Max-Dicut(), which
has a domain size for every . Generalized Max-Dicut(1) is
well-known Max-Dicut. There is an approximation-preserving reduction from
Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and
both our results are achieved through this reduction. Besides its connection to
Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own
right since in most arity two CSPs studied in the literature, SDP-based
algorithms perform better than LP-based or combinatorial algorithms --- for
this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page
Verification and transfer of thermal pollution model. Volume 4: User's manual for three-dimensional rigid-lid model
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time
QCD sum rules for the anti-charmed pentaquark
We present a QCD sum rule analysis for the anti-charmed pentaquark state with
and without strangeness. While the sum rules for most of the currents are
either non-convergent or dominated by the continuum, the one for the
non-strange pentaquark current composed of two diquarks and an antiquark, is
convergent and has a structure consistent with a positive parity pentaquark
state after subtracting out the continuum contribution. Arguments are
presented on the similarity between the result of the present analysis and that
based on the constituent quark models, which predict a more stable pentaquark
states when the antiquark is heavy.Comment: 19 pages, 8 figures, REVTex, revised version,new figures added and
references update
Search for Free Fractional Electric Charge Elementary Particles
We have carried out a direct search in bulk matter for free fractional
electric charge elementary particles using the largest mass single sample ever
studied - about 17.4 mg of silicone oil. The search used an improved and highly
automated Millikan oil drop technique. No evidence for fractional charge
particles was found. The concentration of particles with fractional charge more
than 0.16e (e being the magnitude of the electron charge) from the nearest
integer charge is less than particles per nucleon with 95%
confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR
- …