7,580 research outputs found

    Collapse and Bose-Einstein condensation in a trapped Bose-gas with negative scattering length

    Full text link
    We find that the key features of the evolution and collapse of a trapped Bose condensate with negative scattering length are predetermined by the particle flux from the above-condensate cloud to the condensate and by 3-body recombination of Bose-condensed atoms. The collapse, starting once the number of Bose-condensed atoms reaches the critical value, ceases and turns to expansion when the density of the collapsing cloud becomes so high that the recombination losses dominate over attractive interparticle interaction. As a result, we obtain a sequence of collapses, each of them followed by dynamic oscillations of the condensate. In every collapse the 3-body recombination burns only a part of the condensate, and the number of Bose-condensed atoms always remains finite. However, it can comparatively slowly decrease after the collapse, due to the transfer of the condensate particles to the above-condensate cloud in the course of damping of the condensate oscillations.Comment: 11 pages, 3 figure

    Finite temperature correlations and density profiles of an inhomogeneous interacting 1D Bose gas

    Get PDF
    We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density approximation. The results are valid for a trapping potential which is slowly varying relative to a correlation length. They allow a direct experimental test of the transition from the weak coupling Gross-Pitaevskii regime to the strong coupling, 'fermionic' Tonks-Girardeau regime. We also calculate the average two-particle correlation which characterizes the bulk properties of the sample, and find that it can be well approximated by the value of the local pair correlation in the trap center.Comment: Final published version; updated references; 19 pages, 12 figure

    Critical Dynamics of a Two-dimensional Superfluid near a Non-Thermal Fixed Point

    Full text link
    Critical dynamics of an ultracold Bose gas far from equilibrium is studied in two spatial dimensions. Superfluid turbulence is created by quenching the equilibrium state close to zero temperature. Instead of immediately re-thermalizing, the system approaches a meta-stable transient state, characterized as a non-thermal fixed point. A focus is set on the vortex density and vortex-antivortex correlations which characterize the evolution towards the non-thermal fixed point and the departure to final (quasi-)condensation. Two distinct power-law regimes in the vortex-density decay are found and discussed in terms of a vortex binding-unbinding transition and a kinetic description of vortex scattering. A possible relation to decaying turbulence in classical fluids is pointed out. By comparing the results to equilibrium studies of a two-dimensional Bose gas, an intuitive understanding of the location of the non-thermal fixed point in a reduced phase space is developed.Comment: 11 pages, 13 figures; PRA versio

    Expectation Values in the Lieb-Liniger Bose Gas

    Full text link
    Taking advantage of an exact mapping between a relativistic integrable model and the Lieb-Liniger model we present a novel method to compute expectation values in the Lieb-Liniger Bose gas both at zero and finite temperature. These quantities, relevant in the physics of one-dimensional ultracold Bose gases, are expressed by a series that has a remarkable behavior of convergence. Among other results, we show the computation of the three-body expectation value at finite temperature, a quantity that rules the recombination rate of the Bose gas.Comment: Published version. Selected for the December 2009 issue of Virtual Journal of Atomic Quantum Fluid

    Exact Results for Three-Body Correlations in a Degenerate One-Dimensional Bose Gas

    Full text link
    Motivated by recent experiments we derive an exact expression for the correlation function entering the three-body recombination rate for a one-dimensional gas of interacting bosons. The answer, given in terms of two thermodynamic parameters of the Lieb-Liniger model, is valid for all values of the dimensionless coupling Îł\gamma and contains the previously known results for the Bogoliubov and Tonks-Girardeau regimes as limiting cases. We also investigate finite-size effects by calculating the correlation function for small systems of 3, 4, 5 and 6 particles.Comment: 4 pages, 2 figure

    Evolution of a Bose-condensed gas under variations of the confining potential

    Get PDF
    We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field and find analytical scaling solutions for the evolving coherent state (condensate). We further discuss the characteristic features and the depletion of this coherent state.Comment: 4 pages, no postscript figure

    Three fully polarized fermions close to a p-wave Feshbach resonance

    Full text link
    We study the three-body problem for three atomic fermions, in the same spin state, experiencing a resonant interaction in the p-wave channel via a Feshbach resonance represented by a two-channel model. The rate of inelastic processes due to recombination to deeply bound dimers is then estimated from the three-body solution using a simple prescription. We obtain numerical and analytical predictions for most of the experimentally relevant quantities that can be extracted from the three-body solution: the existence of weakly bound trimers and their lifetime, the low-energy elastic and inelastic scattering properties of an atom on a weakly bound dimer (including the atom-dimer scattering length and scattering volume), and the recombination rates for three colliding atoms towards weakly bound and deeply bound dimers. The effect of "background" non-resonant interactions in the open channel of the two-channel model is also calculated and allows to determine which three-body quantities are `universal' and which on the contrary depend on the details of the model.Comment: 31 pages, 12 figure
    • …
    corecore