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We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a
harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density
approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation
length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime
to the strong-coupling, “fermionic” Tonks-Girardeau regime. We also calculate the average two-particle cor-
relation which characterizes the bulk properties of the sample, and find that it can be well approximated by the
value of the local pair correlation in the trap center.

DOI: 10.1103/PhysRevA.71.053615 PACS numberssd: 03.75.Hh, 05.30.Jp, 03.75.Pp

I. INTRODUCTION

The simplest investigations into a many-body system like
a Bose-Einstein condensate comprise studies of thermal
equilibrium properties, and the physics of small fluctuations
around thermal equilibrium. For one-dimensional systems,
very similar behavior is found using either photons in optical
fibers or ultracold atoms in waveguides. Although techniques
are not yet as experimentally advanced in the latter case,
preliminary theory and some experimental measurements
have already taken place. The atomic systems have the ad-
vantage that relatively long interaction times, large interac-
tion strengths, and low losses are possible, thus potentially
allowing stringent tests of underlying quantum correlations.
In this paper, we extend previous studies of correlations to
include the experimentally realistic case of atoms in a wave-
guide with a harmonic longitudinal confining potential. The
treatment is at finite temperature, and makes use of exact
results for the uniform gas, together with a local density
approximation.

For strong radial confinement, these types of system are
examples of one-dimensionals1Dd quantum gasesf1–5g.
They have the important property that in many cases their
energy eigenstates are exactly solvablef6–13g, resulting in a
greatly increased fundamental understanding of the relevant
quantum field theory. For this reason, the study of 1D sys-
tems plays an important role in the physics of quantum
many-body systems. It is possible to make first-principle pre-
dictions without introducing added approximations like per-
turbation theory. This permits direct experimental tests of the
underlying many-body quantum physics, as has been demon-
strated in photonics with squeezed solitons in optical fibers
f14g.

For ultracold atomic systems with repulsive interactions,
the most interesting and exciting feature is the predicted tran-
sition of an interacting gas of bosons to a “fermionized”
Tonks-Girardeauf6g regime at large coupling strengths and
low densities.

We have recently made use of the known exact solutions
to the uniform one-dimensional interacting Bose gas problem
to calculate the exact local second-order correlation function
at all densities and interaction strengthsf15–17g. This is the
most direct indication of fermionic behavior, since this cor-
relation function is strongly reduced at low density and
strong coupling—similar to the case of fermions, where it
vanishes exactly, due to the Pauli exclusion principle.

The first experimental evidence of reduced or “anti-
bunched” correlations in a 1D Bose gas has recently been
demonstrated in Ref.f3g. However, current experiments typi-
cally take place in traps, with a longitudinal trapping poten-
tial. Provided the trap potential varies slowly, this environ-
ment is sufficiently close to a uniform one so that the exact
solutions can still be used locally, in an approximation called
the local density approximation.

In this paper, we make use of the local density approxi-
mation sLDA d to calculate the density profile and finite-
temperature local pair correlation function of a 1D Bose gas
trapped in a harmonic potential. The results are valid for
sufficiently low longitudinal trap frequencies, and make use
of the exact solutions to the plane-wave Lieb-Liniger model
f7g at finite temperature, together with the Hellmann-
Feynman theorem. We mostly focus on regimes with quan-
tum degeneracy. This requires temperaturesT&TQ, where
TQ=N"vz is the temperature of quantum degeneracy of the
trapped sample as a whole,N is the total number of particles,
andvz is the axial trap frequency.

Our main results show how fermionization can be readily
detected through a simple measurement of the pair correla-
tion averaged over the trap. This is very close to the corre-
lation at the trap center as predictedf16g using the Lieb-
Liniger uniform model, and in principle can be measured via
photoassociation of trapped atoms, or other related two-body
inelastic processes whose rates are governed by the local pair
correlationsf18g. In addition, an indirect measure of the pair
correlations can be obtainedf15,19g via the measurement of
three-body recombination rates as recently demonstrated ex-
perimentallyf3g.
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II. ONE-DIMENSIONAL BOSE GAS

One-dimensional quantum field theories have the impor-
tant and useful property that they are often exactly solvable.
This is not generally the case for higher-dimensional quan-
tum field theories. Thus, the study of these 1D models can
lead to an insight into the nature of quantum field theory for
interacting particles that is not possible from the usual per-
turbative approaches. In this section, we review the physics
of these exact solutions for interacting bosons in the uniform
1D case, and introduce the theoretical framework for treating
a nonuniform gas within the local density approximation.

A. Hamiltonian

The study of exact solutions for the one-dimensional Bose
gas started with Girardeau’s seminal workf6g on hard-core,
or impenetrable bosons. In this model, there is a remarkable
and exact correspondence between the measurable correla-
tion functions of free fermions, and those of strongly inter-
acting bosons. In the 1D Bose gas model with ad-function
interaction, solved by Lieb and Linigerf7g, the particles can
pass through each other, so they are no longer impenetrable.
This provides a realistic description of a waveguide with
transverse dimensions larger than the “core” of a particle in
the waveguide. Under these circumstances, there may only
be a single relevant transverse mode, yet particles are able to
exchange their positions as they propagate past each other.

Thus, we start by reviewing the theory of a gas ofN
bosons interacting via ad-function potential in one dimen-
sion. The 1D Bose gas has a short-range repulsive interaction
between particles which is characterized by just one coupling
constant. In second quantization, the Hamiltonian is

Ĥ =
"2

2m
E dz]zĈ

†]zĈ +
g

2
E dzĈ†Ĉ†ĈĈ

+E dz VszdĈ†Ĉ, s2.1d

whereĈszd is the bosonic field operator,m is the atom mass,
g.0 is the coupling constant, andVszd is the trapping po-
tential which we assume is harmonic withVszd=mvz

2z2/2,
while vz is the trap oscillation frequency in the axial direc-
tion. To treat the uniform gas we setVszd=0.

For Bose gases in highly elongated cylindrical trapssvz
!v', wherev' is the frequency of the transverse harmonic
potentiald such that the sample can be described by the above
1D model, the coupling constantg is expressed through the
3D scattering lengtha f20g. For a positive scattering lengtha
which is much smaller than the amplitude of transversesx,y
directiond zero-point oscillations, or the transverse harmonic
oscillator length,

l' = Î"/mv', s2.2d

one has

g .
2"2a

ml'
2 = 2"v'a. s2.3d

The 1D, regime is reached ifl' is much smaller than the
thermal de Broglie wavelengthLT=s2p"2/mTd1/2 and a
characteristic length scalelc f21g responsible for short-range
correlations. On the same grounds as atT=0 f15g, one finds
that for satisfying this requirement it is sufficient to satisfy
the inequalities

a ! l' ! h1/ns0d,LTj, s2.4d

where ns0d=kĈ†s0dĈs0dl is the 1D slineard density in the
center of the trap,z=0.

B. Ground-state solution for the uniform gas

We now give a brief overview of the uniformfVszd=0g
Bose gas problem describing a gas ofN bosons interacting
via a pairwise repulsived-function potential in a 1D box of
length L with periodic boundary conditionf7g. In the ther-
modynamic limit sN,L→`, while the 1D linear densityn
=N/L is kept constantd, the solution to the energy eigenstates
is foundf7g using the Bethe ansatzf22g. In this solution, all
relative wavefunctions are assumed to have a plane-wave
form—except for finite changes in gradient at each collision
where the two particle coordinates are equal:

ucNl =E dNzp
i=1

N

eikiziFp
j.i

S1 −
ic

ki − kj
sgnszi − zjdDG

3 Ĉ†sz1dĈ†sz2d ¯ Ĉ†szNdu0l. s2.5d

Here, we have used units in which"=2m=1, while intro-
ducing the Lieb-Liniger notationf7g of c=mg/"2. Also,
sgnszi −zjd is the sign function, andki is the “quasimomen-
tum.” The quasimomenta are determined from thed-function
slope-change requirements, that is,kj+1−kj is determined by
the boundary conditions atzi =zj. In the limit of a large
sample, and definingkj+1−kj =1/fLfskjdg, one can approxi-
matefskjd by a continuous functionfskd which is the density
of quasimomenta. The distribution of quasimomenta is then
obtained as the solution to the following integral equation:

2pfskd = 1 +E
−kF

kF

Ksk − pdfspddp. s2.6d

Here, the kernel functionKskd is given by

Kskd =
2c

c2 + k2 , s2.7d

and kF is the maximum quasimomentum which determines
the particle number densityn=N/L via

n =E
−kF

kF

fskddk. s2.8d

The corresponding ground-state energy is given by

E0 = LE
−kF

kF

fskdk2dk, s2.9d

and is often written asE0=Nn2esgd, being an implicit func-
tion of n, via a dimensionless functionesgd of the parameter
g=c/n.
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Restoring the physical units, this gives an energy per par-
ticle:

E0/N =
"2

2m
n2esgd, s2.10d

where

g =
mg

"2n
. s2.11d

The dimensionless parameterg which characterizes the
strength of interactions is in fact the only parameter needed
to describe the uniform 1D Bose gas at zero temperature.
The limit of g!1 corresponds to the weakly interacting
Gross-PitaevskiisGPd regime, where the mean-field Bogoliu-
bov theory works well. The opposite limit ofg@1 corre-
sponds to the strongly interacting or Tonks-GirardeausTGd
regime, and asg→` one regains Girardeau’s results for im-
penetrable bosons.

The solution to the ground-state energyE0 can be used,
together with the Hellmann-Feynman theoremf23g, for cal-
culating an important observable—the normalized local pair
correlation

gs2ds0d =
kC†szdC†szdCszdCszdl

n2 . s2.12d

The pair correlation is found by taking the derivative of
the ground-state energy with respect to the coupling constant
g, owing to the fact that

dE0

dg
=KdĤ

dg
L =

L

2
kC†szdC†szdCszdCszdl, s2.13d

so that

gs2ds0d =
desgd

dg
. s2.14d

The pair correlationgs2ds0d for the zero-temperature uni-
form 1D Bose gas has been calculated using the Lieb-Liniger
exact solutionf7g for esgd. The results are given in Ref.f15g.
Here, we will extend these resultsssee Sec. IIId to the case of
a trappedsnonuniformd Bose gas using the local density ap-
proximation, and to finite temperatures as well.

C. Uniform gas at finite temperature

The excited states of the uniform 1D Bose gas can be
calculated in a similar way, with each excited state corre-
sponding to the removal of a quasimomentum with
uku,kF—called a hole—and the creation of a quasimomen-
tum with uku.kF. In 1969, Yang and Yangf8g worked out the
finite-temperature density matrix solution for the Lieb-
Liniger model, by constructing the free energy and taking
into account the entropy of all the different excited states.
This was used in a subsequent workf9g to calculate numeri-
cally the pressure of the gas as a function of temperature.

At thermal equilibrium, we now assume that the density
of quasimomentafskd has no upper cutoff, and that it con-
sists of two types of terms—occupied quasimomentafwith

densityfpskdg and unoccupied or “hole” quasimomentafwith
density fhskdg, i.e., fskd= fpskd+ fhskd. The overall integral
equation now has the formsusing units in which"=2m=1
andc=mg/"2d

2pfskd = 2pffpskd + fhskdg = 1 +E
−`

`

Ksk − pdfpspddp.

s2.15d

Hence, the particle densityn is obtained from the occu-
pied or particle quasimomenta

n =E
−`

`

fpskddk, s2.16d

while the total energy is now

E0 = LE
−`

`

fpskdk2dk. s2.17d

However, there is also an entropy involved, since there
are many wave functions that are nearly the same, within a
given range of values offpskd and fhskd. In fact, the number
of choices compatible with a givendk value is

ffskdL dkg!
ffpskdL dkg ! ffhskdL dkg!

. s2.18d

Thus, the entropy is

S= LE
−`

`

ff ln f − fpln fp − fhln fhgdk. s2.19d

Minimizing the total free energyF=E−TSgives the ther-
mal equilibrium distribution of holes and particles, where we
choose temperature to be in energy units, so thatkB=1. The
minimization at a fixed average particle number requires the
use of a Lagrange multiplierm, and gives the result that the
distribution fpskd satisfies the integral equation

2pfpskdf1 + e«skd/Tg = 1 +E
−`

`

Ksk − pdfpspddp, s2.20d

where the excitation spectrum«skd is calculated from a sec-
ond integral equation

«skd = − m + k2 −
T

2p
E

−`

`

Ksk − pdlns1 + e−«spd/Tddp. s2.21d

Here,m can be shown to coincide with the chemical potential
of the system, while the entropy and the free energy per
particle are found from

S/N =
1

n
E

−`

`

ffskdlns1 + e−«skd/Tdgdk+
1

nT
E

−`

`

fpskd«skddk,

s2.22d

F/N = m −
T

2pn
E

−`

`

lns1 + e−«skd/Tddk. s2.23d
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In addition, using the thermodynamic identityF=−PL
+mN, one can arrive at the following simple result for the
pressure of the gas:

Psm,Td =
T

2pn
E

−`

`

lns1 + e−«skd/Tddk. s2.24d

To calculate the pair correlationgs2ds0d for a finite tem-
perature gas one can again use the Hellmann-Feynman theo-
rem f23g. Here, we consider the canonical partition function

Z=exps−F /Td=Tr exps−Ĥ /Td, where the trace is over the
states of the system with a fixed particle numberN, at tem-
peratureT. Taking the derivative ofF=−T ln Z with respect
to the coupling constantg we obtain

]F

]g
=

1

Z
TrFe−Ĥ/T]Ĥ

]g
G =

L

2
kC†szdC†szdCszdCszdl. s2.25d

Introducing the free energy per particlef =F /N and restoring
the physical units, this givesf16g

gs2ds0d =
2

Ln2S ]F

]g
D

N,T
=

2m

"2n
S ] fsg,td

]g
D

n,t
. s2.26d

Here, t=T/Td is a dimensionless temperature parameter,
with Td="2n2/2m being the temperature of quantum degen-
eracy for a uniform gas. Hence, we have

t =
2mT

"2n2 . s2.27d

The pair of dimensionless parametersg and t completely
characterize the properties of a finite-temperature uniform
gas.

Alternatively, the local pair correlationgs2ds0d can be cal-
culated within the grand canonical formalism. Here, we con-
sider the grand canonical partition functionZ=exps−V /Td
=Tr expfsmN̂−Ĥd /Tg, whereV=F−mN=−PL is the grand
canonical thermodynamic potential andP is the pressure.
The trace is over the states of the system, at a fixed chemical
potentialm and temperatureT. Taking the derivative ofV=
−T ln Z with respect to the couplingg we obtain

]V

]g
= − T

] ln Z
]g

= −
1

ZTrH ]smN̂ − Ĥd
]g

expfsmN̂ − Ĥd/TgJ
=

L

2
kC†szdC†szdCszdCszdl. s2.28d

Thus, the normalized pair correlationgs2ds0d can be cal-
culated using

gs2ds0d =
2

Ln2S ]V

]g
D

m,T
= −

1

n2S ]P

]g
D

m,T
. s2.29d

This requires the use of Eq.s2.24d for the pressure, which in
turn is found after solving the Yang-Yang integral equations
s2.20d and s2.21d.

The local pair correlation for a finite-temperature uniform
gas has been first calculated in Ref.f16g using the exact
solutions to the Yang-Yang integral equationss2.20d and
s2.21d, together with Eqs.s2.23d ands2.26d. In Secs. IV–VII,

we will extend these results to the case of a trapped gas using
the local density approximation.

D. Quasiuniform approximation

In a quasiuniform approximation, we suppose that the
system can be divided into small regions of sizeDz which is
larger than a characteristic short-range correlation lengthlc.
In each of these regions we assume that the inhomogeneity
of the gas is negligible so that it can be treated as a uniform
gas.

In this case, the trapping potentialVszd is replaced by a
steplike functionVszjd=mvz

2zj
2/2 which is constant within

each region fromzj to zj+1 and undergoes steplike changes at
the boundaries of the adjacent regions. Here, the sizeDz
takes the role of the lengthL from the Yang-Yang solution
that applies to each region.

We now consider an ansatz in which the overall density
matrix has the structure of an outer product of canonical
solutions, withNj being the average number of particles in
the j th region:

r̂N = r̂N1sz1dr̂N2sz2d ¯ r̂Nnsznd. s2.30d

Next we look for an approximate solution in which the
effective Hamiltonian is assumed to introduce no coupling
between the regions. To obtain this we must now minimize
the total free energy given by

FN = o
j=1

n

sEj − TSjd. s2.31d

This requires us to include a constraint on the total particle
number:

N = o
j=1

n

Nj . s2.32d

Hence, it is appropriate to use a Lagrangian formulation with

L = o
j=1

n

sEj − TSj − m0Njd. s2.33d

We note here that the LagrangianL is now simply a sum
over independent regions, with each term corresponding to
that for a single uniform Bose gas. As we are only constrain-
ing the total particle number, not the number in each region,
the chemical potential is the same for each term. Since there
is no explicit coupling between the regions, the Lagrangian
is minimized when we satisfy the Yang-Yang equations in
each separate region, but with the samesglobald chemical
potentialm0 at all locations.

E. Local density approximation

In more detail, we have shown that for a large system,
where the density profile varies in a smooth way, the system
behaves locally as a piece of a uniform gas. This can be
described locally as a uniform gas with chemical potential
equal to the local effective chemical potential
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mszd = m0 − Vszd = m0 −
1

2
mvz

2z2, s2.34d

wherem0 is the global equilibrium chemical potential.
For the LDA to be valid, the short-range correlation

length lcszd should be much smaller than the characteristic
inhomogeneity lengthl inhszd. These length scales depend on
the displacement from the trap centerz, and the LDA validity
criterion reads

lcszd ! l inhszd ;
nszd

udnszd/dzu
. s2.35d

The short-range correlation lengthlcszd is defined locally
via the density distributionnszd. At low temperatures, the
correlation lengthlcszd can in generalsirrespective of the
interaction strengthd be expressed via the local chemical po-
tential mszd:

lcszd =
"

Îmmszd
sT ! TQd. s2.36d

In the weakly interacting Gross-Pitaevskii regime the rela-
tion between the chemical potentialmszd and the densitynszd
is mszd=gnszd, and we obtain that the correlation length co-
incides with the healing lengthlcszd=" /Îmgnszd. In the
strongly interacting Tonks-Girardeau regime one hasmszd
=p2"2n2szd / s2md, so thatlcszd,1/nszd, neglecting the nu-
merical factor of order 1. At high temperatures,lcszd is of the
order of the thermal de Broglie wavelengthLT.

The conditions2.35d is sufficient for using the LDA for
calculating the density profiles and local correlation func-
tions. The reason is that these correlations, in particular the
two-particle correlationgs2ds0d, are determined by the contri-
bution of excitations which have energies of the order of the
chemical potential and wavelength of the order oflc. How-
ever, this is not the case for all correlation functions. For
example, calculation of the finite-temperature single-particle
correlation function would require a strong LDA condition in
which the sample size was much larger than the phase cor-
relation distancef27g. In this sense, one may call Eq.s2.35d
the “weak” LDA criterion. However, within the LDA, no
correlation function can be calculated reliably over distance
scales that are comparable to the sample size.

Thus, the weak criterion of validity of the LDA requires
that variations of the density occur on a length scale that is
much larger thanlcszd, in which case the gas is treated locally
as a piece of a uniform gas. From the definition ofl inhszd, one
can easily see that the LDA is easier to satisfy in the center
of the trap where the density profile is almost flat than near
the tails of the distribution where the density drops rapidly.
However, for measurements that average over an entire trap,
it is the central region that plays the most important role.

III. ZERO-TEMPERATURE TRAPPED GAS

A. LDA criterion at T=0

Here, we analyze the implications of the LDA criterion
s2.35d for a zero-temperature gas. AtT=0, a uniform 1D

Bose gas can be characterized by a single dimensionless in-
teraction parameterg, Eq. s2.11d. Depending on its value,
one has two well-known and physically distinct regimes of
quantum degeneracy. Forg!1, i.e., at weak couplings or
high densities, the gas is in a coherent or Gross-Pitaevskii
regime. In this regime, long-range order is destroyed by
long-wavelength phase fluctuationsf24–27g and the equilib-
rium state is a quasicondensate characterized by suppressed
density fluctuations. For strong couplings or low densities,
g@1, the gas reaches the strongly interacting or Tonks-
Girardeau regime and undergoes fermionizationf6,7g. The
term “fermionization” is used here in the sense that the wave
function strongly decreases as particles approach each other.

For a trappedsnonuniformd gas one can introduce a local
interaction parameter

gszd =
mg

"2nszd
, s3.1d

which changes with the density distributionnszd and can be
used for characterizing the local properties of the gas.

From the definition ofgszd it is clear that as one moves
from the center of the trap toward the tails of the density
distribution wherenszd→0, the gas either enters the TG re-
gime wheregszd@1, or else the LDA itself breaks down.

Moreover, in theT=0 case the Lieb-Liniger solution
within the LDA gives a density profile that vanishesfnszd
=0g beyond a certain distanceR from the originf28,29g. This
distance is called the Thomas-Fermi radius and it is deter-
mined from the conditionmsRd=m0−mvz

2R2/2=0 which
gives

R= S 2m0

mvz
2D1/2

. s3.2d

Sincenszd vanishes exactly atuzuùR f30g, it is clear that
the LDA criterions2.35d can only be satisfied up to a certain
maximum distance from the trap centeruzu.R−dz, displaced
from R by dzsdz!Rd. We would like therefore to determine
the displacementdz such that the LDA is valid for 0ø uzu
øR−dz and breaks down beyonduzu.R−dz.

As we are interested in calculating the density profiles and
the local two-particle correlation function, we will only focus
on the weak LDA criterion, Eq.s2.35d. First, we rewrite the
inhomogeneity length scale from Eq.s2.35d in the following
equivalent form:

l inhszd = nszdUdmszd/dnszd
dmszd/dz

U . s3.3d

Using the explicit expressionmszd=m0−mvz
2z2/2 and tak-

ing its derivative, we obtain atuzu.R−dzsdz!Rd

l inhszd .
nszd

mvz
2R
Udmszd

dnszd
U . s3.4d

Combining Eqs.s2.36d and s3.4d, one can rewrite the
LDA criterion lcszd! l inhszd in the following equivalent form
sagain neglecting numerical factors of order 1d:
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Smszd
m0

D3/2 m0

"v

d ln mszd
d ln nszd

@ 1. s3.5d

Next, we note that in the limiting GP and TG regimes the
derivatived ln mszd /d ln nszd is equal, respectively, to 1 and
2, so in general 1ød ln mszd /d ln nszdø2. Therefore, the
exact numerical value of this quantity can be replaced by
unity in all regimes, and the LDA criterion becomes

Smszd
m0

D3/2 m0

"vz
@ 1. s3.6d

Finally, expandingmszd near the edge of the cloud where
uzu.R−dzsdz!Rd, we obtain thatmszd /m0.dz/R, so that
the criterion of applicability of the LDA is reduced to a
simple requirement:

dz

R
@ S"vz

m0
D2/3

. s3.7d

For gs0d!1, the local value ofgszd at z.R−dz is

gszd .
mgR

"2ns0ddz
. gs0dS m0

"vz
D2/3

. s3.8d

We see that ifgs0d! s"vz/m0d2/3 thengszd!1 at z.R−dz,
implying that the gas stays in the GP regime at all locations
z until the LDA breaks down. If, on the other hand,gs0d
@ s"vz/m0d2/3 thengszd@1 at z.R−dz so that the gas first
approaches the TG regime and then the LDA breaks down.

For gs0d@1 the gas is in the TG regime at all locationsz,
until the LDA breaks down. This is becausegszd is always
larger thangs0d, and hencegszd@1.

In the limiting cases ofgs0d!1 andgs0d@1, the LDA
criterion s3.7d can be conveniently rewritten in terms ofgs0d
and the total number of particlesN. In doing so we use the
fact that the chemical potential is given bym0=gns0d for
gs0d!1, and bym0=p2"2n2s0d / s2md for gs0d@1. In addi-
tion, we use the known relationship between the peak density
ns0d andN in each casefsee Eqs.s3.14d and s3.18d belowg.
As a result, we obtain that the LDA criterions3.7d can be
rewritten as follows, in the GP and TG regimes, respectively:

dz

R
@ 5S

"vz

gns0dD
2/3

.
1

gs0d1/3N2/3 fgs0d ! 1g, s3.9d

S 2mvz

p2"2n2s0dD
2/3

=
1

N2/3 fgs0d @ 1g. s3.10d6
As we see, for any small but finitegs0d in the GP regime,

the right-hand side of Eq.s3.9d can be made small by in-
creasing the total number of particlesN. For a fixed coupling
g and a constant densityns0d fsuch thatgs0d stays constantg,
the increase of the particle numberN has to be accompanied
by a reduction of the trap frequencyvz. Thus, the ratiodz/R
can also be made small, so that that the LDA criterion in the
GP regime fgs0d!1g is satisfied for almost the entire
sample, up to the locationz=R−dz very close to the edge of
the cloud. Similar considerations apply to the TG regime
fgs0d@1g, where the requirement on theslarged total number
of particlesN is less stringent than in the GP regime.

B. Pair correlations at T=0

Here we discuss the local pair correlation

gs2dsz,zd ;
kĈ†szdĈ†szdĈszdĈszdl

n2szd
s3.11d

in a zero-temperature trapped gas within the LDA. The cal-
culations are done using the solution to the Lieb-Liniger
equations2.6d and the Hellmann-Feynman theoremf23g, Eq.
s2.14d. Here,gs2ds0d is now replaced bygs2dsz,zd andg is to
be understood as the local value ofgszd. Thus, to calculate
gs2dsz,zd as a function of the distance from the trap center,
one can use the uniform results in which the interaction pa-
rametergszd is found from the density profilenszd, for dif-
ferent values ofgs0d.

The implementation of the LDA, using the local effective
chemical potentialmszd, Eq. s2.34d, is carried out by means
of first calculating the chemical potentialm as a function of
n, and then inverting this dependence for obtainingnszd. This
givesnszd fand hencegszdg as a function ofmszd, for a given
value of the interaction parametergs0d at the trap center.

Depending on the value of the coordinate-dependent in-
teraction parametergszd, Eq. s3.1d, we have the following
limiting behavior of the pair correlation function.

In the Gross-Pitaevskii limit of a weakly interacting gas,
the pair correlation in the uniform case isgs2d.1
−2Îg /p ,g!1 f15g. For a trapped gas, replacingg by gszd
gives

gs2dsz,zd . 1 −
2

p
Î gs0d

1 − z2/R2, gszd ! 1. s3.12d

where we have used the relationship betweengszd andnszd
and the fact that in the GP regime the density profile is given
by the familiar Thomas-Fermi parabola

nszd = ns0ds1 − z2/R2d, s3.13d

and nszd=0 for uzuùR. Here, the peak densityns0d and the
radiusR are given by

ns0d = S9mN2vz
2

32g
D1/3

, s3.14d

R= S 3Ng

2mvz
2D1/3

. s3.15d

In the Tonks-Girardeau limit of strong interactions, the
uniform gas pair correlation isgs2d.4p2/ s3g2d , g@1 f15g.
In the trapped gas case, replacingg by gszd gives

gs2dsz,zd .
4p2s1 − z2/R2d

3g2s0d
, gszd @ 1, s3.16d

where we again used the relationship betweengszd andnszd
and the fact that the density profile in the TG regime is given
by the square root of the parabola:

nszd = ns0ds1 − z2/R2d1/2, s3.17d

and nszd=0 for uzuùR. Here, the peak densityns0d and the
radiusR are
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ns0d = S2mNvz

p2"
D1/2

, s3.18d

R= S2"N

mvz
D1/2

. s3.19d

In Fig. 1 we present the density profilesnszd as a function
of the dimensionless coordinatez/R, for different values of
gs0d. The full lines represent the results of the numerical
calculation within the LDA, which reproduce the results of
Ref. f28g, while the dashed and the dotted lines represent,
respectively, the above analytic results in the GP and TG
regimes.

Figure 2 shows the local pair correlationgs2dsz,zd as a
function of z/R, for different values ofgs0d. As we see, for
the case of weak interactionsgs0d!1, the pair correlation is
close to unity in the central bulk part of the distribution. This
is an expected result for the coherent or GP regime. As one
approaches the tails of the distribution, where the density is
reduced andgszd becomes larger than 1, the gas locally ap-
proaches the TG regime of fermionization. Here, the pair
correlation is suppressed below the coherent level,gs2dsz,zd
,1.

For the cases wheregs0d*1, including the TG regime of
gs0d@1, the pair correlation is suppressed across the entire
sample. In the limitgs0d→`, the gas acquires pronounced
fermionic properties so that the wave function strongly de-
creases as particles approach each other, thus resulting in
gs2dsz,zd→0.

IV. FINITE-TEMPERATURE TRAPPED GAS

A. Key parameters

An obvious choice of dimensionless interaction and tem-
perature parameters for describing a trapped 1D Bose gas
within the LDA consists in using the local value of the inter-

action parametergs0d and the reduced temperaturets0d in
the trap center.

These are the same parameters that are used in the uni-
form gas treatmentf16g, Eqs.s2.11d and s2.27d, except that
now we define them via the local densitynszd. Thus, in gen-
eral, we define the local interaction parametergszd and the
local reduced temperaturetszd, according to

gszd =
mg

"2nszd
, s4.1d

tszd =
T

Tdszd
=

2mT

"2n2szd
, s4.2d

whereTdszd="2n2szd / s2md is the local temperature of quan-
tum degeneracy that correspondsslocallyd to the conditions
where the mean interparticle separation becomes of the order
of the thermal de Broglie wavelength.

The values of these parameters at the trap center,gs0d and
ts0d, completely characterize all relevant properties of the
gas within the LDA, including the associated density profiles
nszd, the resulting total number of particlesN, as well as the
correlation functions and the thermodynamic properties.

A completely equivalent pair of the interaction and tem-
perature parameters, which is, however, more suitable for

FIG. 1. Examples of the density profilesnszd /ns0d of a zero-
temperature 1D Bose gas in a harmonic trap as a function of the
dimensionless coordinatez/R, for different values of the interaction
parametergs0d. The solid lines are the results of the exact numeri-
cal solution of the Lieb-Liniger equations within the LDA. The
dashed and the dotted lines are the analytic results given by the
Thomas-Fermi parabola in the GP regime and the square root of the
parabola in the TG regime, respectively.

FIG. 2. The local pair correlation of a trapped 1D Bose gas at
zero temperature,gs2dsz,zd, as a function of the displacement from
the trap center,z/R, for different values ofgs0d. The full lines are
the results of numerical calculation, while the dashed lines for
gs0d=0.01,0.1 andgs0d=10,100 are the respective analytic results
of Eqs.s3.12d and s3.16d shown for comparison.
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practical purposes is the local value ofgszd and a new tem-
perature parametert defined via

t =
ts0d
g2s0d

=
tszd
g2szd

=
T

mg2/s2"2d
. s4.3d

According to this definition, the temperature is measured in
units of the characteristic energyEb=mg2/ s2"2d.

The advantage of usingt as the dimensionless temperature
parameter is that it is independent of the density and gives a
direct measure of the global temperature of the gas, which in
equilibrium is the same for the entire sample. This allows us
to easily explore the “interaction-temperature” parameter
spacefgs0d-tg in a systematic way. For example, considering
different values ofgs0d while t is kept constant would cor-
respond to physical conditions under which the peak density
of the gasns0d is varied while the absolute temperatureT is
kept unchanged. An experimental technique that imple-
mented this approach for achieving a Bose-Einstein conden-
sation in a 3D gas has recently been demonstrated in Ref.
f31g.

Other alternative choices are possible for characterizing
the interactions and temperature of a trapped gas in dimen-
sionless units. For example, to characterize the system at
different temperaturesT while the total number of particlesN
is kept constant, one can define an alternative pair of global
parameters which are more suitable for this casessee Sec.
VI d. Here, the global temperature parameter can be defined
as u=T/TQ, whereTQ=N"vz is the global temperature of
quantum degeneracy of a trapped gassin energy units,kB
=1, wherekB is the Boltzmann constantd. Irrespective of the
interaction strength, a harmonically trapped Bose gas atT
@TQ obeys the classical Boltzmann statistics, whereas for
T&TQ quantum statistical effects become important. This is
clearly seen in the limit of a trapped ideal gasfgs0d→0g and
in the opposite limit of a strongly interacting gasfgs0d
→`g. In the latter case, the problem maps onto the trapped
gas of noninteracting fermionsf6g. So, in both limitsTQ
appears explicitly as the temperature of quantum degeneracy
for the trapped sample as a whole.

B. LDA criterion at finite T

Here we analyze the local density approximation for a
finite-temperature gas, and obtain simple criteria for its va-
lidity in the limiting cases of very high and very low tem-
peratures,T@TQ andT!TQ.

In the high-temperature limit,T@TQ fin which case
ts0d.4psT/TQd2g, the density distributionnszd can be ap-
proximated by a Gaussian profile in all regimes, as the inter-
action between the particles is negligible compared to their
thermal kinetic energies. ForN particles at temperatureT in
a harmonic trap of frequencyvz, the density profile is deter-
mined by the thermal distribution for a classical ideal gas
described by Boltzmann statistics:

nTszd =
N

ÎpRT

exps− z2/RT
2d, s4.4d

where the radiusRT characterizes the width of the Gaussian
and is given by

RT =Î 2T

mvz
2 . s4.5d

In this high-temperature limit, the correlation length is
given by the thermal de Broglie wavelengthLT, so that the
LDA criterion s2.35d gives

z!
T

"vz
S 2T

mvz
2D1/2

=
T

"vz
RT sT @ TQd. s4.6d

Since T@TQ=N"vz implies thatT@"vz, the above LDA
criterion can be satisfied for all locationsz from the trap
center up to distances equal to several characteristic widths
RT. For sufficiently large total number of particlesN, the
ratio T/"vz will be even larger so that the LDA will be valid
for even larger distance from the trap center.

In the opposite limit of low temperaturesT!TQ fin which
case ts0d.8Î2gs0dT/ s3TQd for gs0d!1, and ts0d
.p2T/TQ for gs0d@1g, the density profilenszd can be ap-
proximated by two contributions. The first one is for the
central bulk part which will be close to theT=0 density
profile up to a certain distanceuzu.R−dzsdz!Rd from the
trap center. HereR is the zero-temperature Thomas-Fermi
radius, Eq.s3.2d. The second contribution is for the tails of
the distribution which can be approximated by a thermal
Gaussian.

As before, we will focus on the weak LDA condition
s2.35d involving the correlation lengthlcszd. For the central
part of the sample, up to distancesuzu.R−dzsdz!Rd, we
can use the LDA criterion derived for the zero-temperature
gas, Eq.s3.7d. In the weakly and strongly interacting limits
this can be rewritten—as before—in terms of the interaction
parametergs0d and the total number of particlesN fsee Eqs.
s3.9d and s3.10dg.

For the Gaussian tails of the distribution, i.e., at distances
uzu.R, where the local correlation length is given byLT, we
use the above high-temperature result Eq.s4.6d and rewrite it
in terms of the Thomas-Fermi radiusR and the global chemi-
cal potentialm0. As a result, the LDA criterion for the Gauss-
ian tails of a low-temperature gas can be written in the fol-
lowing form:

z! S T

"vz
D1/2S m0

"vz
D1/2

R sT ! TQd. s4.7d

In the GP regimefgs0d!1g, wherem0.gns0d, this gives

z/R! ts0d1/2N. s4.8d

Thus, in order that the LDA works in the tails of the density
distribution suzu.Rd in the GP regime, one has to have
ts0d1/2N@1. This requirement can always be satisfied with a
sufficiently large number of particlesN. For example, for
ts0d=3.8310−3 fwhich can be obtained, for example, with
gs0d=0.01 andT/TQ=0.01, according to the relationship
ts0d.8Î2gs0dT/ s3TQd valid in this regimeg one would need
to haveNù870 in order to satisfy the LDA criterion for
distancesR&z!20R.
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In the TG regime fgs0d@1g, where m0

.p2"2n2s0d / s2md, Eq. s4.7d again reduces to the condition
given by Eq.s4.8d. Thus, in the TG regime the validity of the
LDA in the tails of the distribution again requires that
ts0d1/2N@1. However, now we havets0d.p2T/TQ, for T
!TQ.

To summarize, in the low-temperature limit the LDA cri-
terion can be easily satisfied for the central bulk part of the
density distribution and for the Gaussian tails. This leaves
the question of validity of the LDA in the low-density region
nearz=R, where the density may vary more rapidly.

We note, however, that at small finite temperatures the
variation of the density profile aroundz=R is more smooth
than in theT=0 limit, so that the LDA criterion may still be
satisfied in this region, in contrast to theT=0 case where the
LDA necessarily breaks down as one approaches the edge of
the cloud atz=R. More importantly, the LDA becomes valid
again for distances past the small critical region aroundz
=R, i.e., in the tails of the density distribution. This means
that the results of calculation of the pair correlation function
gs2dsz,zd at small finite temperatures should be valid every-
where except in a small region aroundz=R. At high tempera-
tures the LDA criterion becomes less restrictive, and can be
satisfied for the entire sample.

C. Calculating the local pair correlation and density profiles

The local pair correlationgs2dsz,zd, Eq. s3.11d, as a func-
tion of the locationz from the trap center is calculated using
Eq. s2.29d in which m is replaced by the local chemical po-
tential mszd=m0−Vszd and wheren is the local densitynszd.
The calculation is based on iterative numerical solution of
the Yang-Yang exact integral equationsf8g for the excitation
spectrum and for the distribution function of quasimomenta
Eqs.s2.20d and s2.21d. For a given set of values ofmszd, T,
andg, this gives the resulting density profilenszd Eq. s2.16d
and the pressureP Eq. s2.24d. DifferentiatingP with respect
to g gives the local pair correlationgs2dsz,zd.

A convenient way to implement the numerical algorithm
for solving the Yang-Yang equations is via a dimensionless
coordinate

j =
z

RT
, s4.9d

where the length scaleRT is the thermal width of the classi-
cal Gaussian distributionnTszd, given by Eq.s4.5d.

Using the dimensionless coordinatej, the local chemical
potential can be rewritten as

msRTjd = m0 − Tj2. s4.10d

After setting up a lattice ofj values,hjij, the solution to the
Yang-Yang equations proceeds as in the case of a uniform
gas, with the input parameters being an array of the values of
the local chemical potentialmi =msRTjid, the temperatureT,
and the coupling parameterg, as described above.

The final numerical results are then presented in terms of
the dimensionless parametersgs0d and the temperature pa-
rameterts0d sor td, where we note that

nszd
ns0d

=
gs0d
gszd

. s4.11d

This makes the output results scalable with respect to the
physical parameters, rather than dependent of their absolute
values.

The total number of particles in the system is calculated
from the resulting density profilenszd via

N =E nszddz. s4.12d

Using the dimensionless coordinatej and Eq.s4.11d this
can be rewritten as

N =
RTmg

"2gs0dE−`

+` gs0d
gsRTjd

dj, s4.13d

so that the dimensionless ratioTQ/T is given by

TQ

T
=

2
Ît
E

−`

+` dj

gsRTjd
. s4.14d

This gives a relationship between the global and local dimen-
sionless parameters and allows us to present the final results
in a scalable fashion, rather than in terms of the absolute
values ofN, T, vz, andg. Here, the desired values ofTQ/T
can be achieved by varying the ratiom0/T of the input pa-
rametersm0 andT.

V. DENSITY PROFILES AND PAIR CORRELATIONS

A. Regimes in a uniform gas

In order to understand the results for the pair correlations
gs2dsz,zd of a trapped 1D Bose gas, we first recall the classi-
fication of the regimes of auniform gas. In Ref.f16g, these
were identified using the results for the local pair correlation
gs2d in terms of the interaction parameterg and the reduced
temperaturet. Here, we give a brief summary of these re-
sults, except that we rewrite them in terms of the parameters
g andt=t /g2, instead ofg andt. This is completely equiva-
lent to the original pair. The new parametersg andt are more
suitable for exploring the properties of thetrappedgases, as
discussed in Sec. IV A.

The diagram representing these different regimes for a
uniform 1D Bose gas in the parameter spacesg-td is shown
in Fig. 3. The regimes are classified as follows:

Strong-coupling regime. In the strong-coupling TG re-
gime of fermionization, whereg@1 and the temperatureT
!Td st!1 or t!g−2d, we only have a small correction com-
pared to the zero-temperature resultf16,32g:

gs2d .
4

3
Sp

g
D2F1 +

g4t2

4p2G, t ! g−2, g @ 1, TG.

s5.1d

In the case of strongly interacting nondegenerate bosons,
where g@1 and the temperatureT@Td s1!t!g2 or g−2

! t!1d, we have the regime of high-temperature fermioniza-
tion. Despite the temperatureT@Td, the local pair correla-
tion is strongly suppressedsgs2d!1d f16,32g:
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gs2d . 2t, g−2 ! t ! 1, TG shigh −Td. s5.2d

Gross-Pitaevskii regime. In the GP regime, whereg!1,
the chemical potential ism=ng and at temperaturesT!m
=2Tdg st!g or t!g−1d the finite-temperature correction to
the zero-temperature result is again very smallf16g:

gs2d . 1 −
2

p
Îg +

p

24
t2g5/2, g ! 1, t ! g−1, GPa.

s5.3d

For T@m=2Tdg st@g or t@g−1d, the finite-temperature
correction is the leading one. It is important to recognize that
the upper bound for the GP regime extends only up to tem-
peratures of the order ofT,ÎgTd st,Îg or t,g−3/2d, and
not toT,Td. Here, the temperatureTd is responsible for the
presence of the quantum degeneracy, andÎgTd for the pres-
ence of phase coherence. Thus, forT@m, the finite-
temperature GP regime lies within the temperature interval
2Tdg!T!ÎgTd sg!t!Îg or g−1! t!g−3/2d, and the pair
correlation here is given byf16g

gs2d . 1 +
1

2
tg3/2, g−1 ! t ! g−3/2, GPb. s5.4d

Decoherent regime. t@maxs1,g−3/2d. Due to the existence
of two characteristic temperatures in the 1D uniform gas,
ÎgTd andTd, at temperaturesT higher thanÎgTd one has two
subregions. For temperatures in the intervalÎgTd!T!Td

sÎg!t!1 or g−3/2! t!g−2d the gas is in the decoherent
quantumsDQd regime, while forT@Td st@1 or t@g−2d the
gas is in the decoherent classicalsDCd regime. In both cases
the local pair correlation is close togs2d.2 f16g:

gs2d . 2 − 4/st2g3d, g−3/2 ! t ! g−2, DQ, s5.5d

gs2d . 2 −S2p

t
D1/2

, t @ maxsg−2,1d, DC. s5.6d

The result in the DC regime remains valid for largeg, pro-
vided t@g2 sor t@g−2d f16g, and we can combine the re-
quired conditions on temperature viat@maxsg−2,1d.

B. Regimes in a trapped gas

In a harmonically trapped finite-temperature 1D Bose gas
we again have a strong-coupling regime, weak-coupling GP
regime, and a decoherent regime. The results for the local
pair correlationgs2dsz,zd in the first two regimes are easily
obtained from Eqs.s5.1d–s5.4d by replacing the interaction
parameterg by the local z-dependent valuegszd of the
trapped sample. However, it is convenient to rewrite the re-
sults for the local correlationgs2ds0,0d in the trap center in
terms of gs0d and the temperature parameteru;T/TQ,
whereTQ=N"vz is the global temperature of quantum de-
generacy of the sample as a whole.

Strong-coupling regime. In the strong-coupling TG re-
gime, wheregs0d@1 andT!TQ, the density profile is given
by the Thomas-Fermi result Eq.s3.17d, and this allows one
to establish the relationship between the temperature param-
eterst andu, usingts0d.p2T/TQ valid in this regime. Thus,
t.p2u /g2s0d and Eq.s5.1d transforms into

gs2ds0,0d .
4p2

3g2s0dF1 +
p2

4
u2G , s5.7d

whereu!1/p2, andgs0d@1.
For the regime of high-temperature fermionization atT

@TQ, the density profile is given by the thermal Gaussian
Eq. s4.4d, so that ts0d.4psT/TQd2 and hence t
.4pu2/g2s0d. Therefore, Eq.s5.2d transforms into

gs2ds0,0d =
8p

g2s0d
u2, s5.8d

where 1!u!gs0d /Î4p.
Gross-Pitaevskii regime. In the GP regimefgs0d!1g, for

temperaturesT!TQ, the density profile is given by the
Thomas-Fermi inverted parabola Eq.s3.13d. We then have
ts0d.8Î2gs0dT/ s3TQd or t.8Î2ufgs0dg−3/2/3, so that Eq.
s5.3d transforms into

gs2ds0,0d = 1 −
2

p
Îgs0d +

16p

27Îgs0d
u2, s5.9d

whereu!3Îgs0d / s8Î2dfu!0.27Îgs0dg andgs0d!1. Simi-
larly, Eq. s5.4d transforms into

gs2ds0,0d = 1 +
4Î2

3
u, s5.10d

where 3Îgs0d / s8Î2d!u!3Î2/8f0.27Îgs0d!u!0.27g.
It is important to emphasize that for smallgs0d and mak-

ing the temperature sufficiently lowsT/TQ=u!1d the gas is
always in the Gross-Pitaevskii regime.

Decoherent regime. For T@TQ, a harmonically trapped

FIG. 3. Diagram of different regimes of a uniform 1D Bose gas
in the sg-td plane. The labels TG, GP, DQ, and DC refer to the
Tonks-Girardeau, Gross-Pitaevskii, decoherent quantum, and deco-
herent classical regimes, respectively. Although all transitions are
continuous, for purposes of discussion we classify the distinct re-
gimes as follows: TG,g.1,t,g−2; TG shigh-Td, g−2, t,1; GPa,
g,1,t,g−1; GPb, g−1, t,g−3/2; DQ, g−3/2, t,g−2; DC, t
.maxh1,g−2j.
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1D Bose gas is in the decoherent classical regime. Here, the
density profile is given by the thermal Gaussian Eq.s4.4d, so
that ts0d.4psT/TQd2 and hencet.4pu2/g2s0d. Accord-
ingly, Eq. s5.6d transforms into

gs2d = 2 −
gs0d
Î2

u, s5.11d

whereu@maxh1,gs0dj, neglecting a numerical factor of the
order of 1. Thus, the validity of this result requiresu@1 for
gs0d,1, andu@gs0d for gs0d.1.

In the case of smallgs0d and at temperaturesT&TQ, one
has a crossover from the classical decoherentsT@TQd re-
gime to the GPsT!TQd regime. The properties of the gas in
this region can be treated as containingslocallyd features of
the decoherent quantum regime of the uniform gas. An ex-
ample illustrating this behavior is given in Fig. 4 where we
plot the density profilenszd and the local pair correlation
gs2dsz,zd as a function ofz/RTF whereRTF is the Thomas-
Fermi radius in the GP regime. These are calculated numeri-
cally using the solution to the Yang-Yang integral equations,
with a value ofgs0d=1.14310−3 at the trap center.

The temperature in this example isT=0.2TQ, which is
intermediate between the decoherent classical and the GP
regimes. Locally, the tails of the density profile are in the
decoherent classical regime. On the other hand, the central
part has features of the decoherent quantum regime. The fig-
ure for gs2dsz,zd shows that fluctuations well above the co-
herent level, withgs2ds0,0d.1.5, can occur even at tempera-
tures below the transition to a quantum gas. However, with
further temperature reduction well belowTQ, the density pro-
file shrinks and one always has a coherent GP regime. For
smaller values ofg, the temperature at which the coherent
regime emerges must in general be calculated numerically.

C. Variation with temperature

In Fig. 5, we illustrate different regimes by plotting the
local pair correlationgs2d as a function of the temperature
parametert, for different values ofg.

For sufficiently largeg the pair correlation approaches a
universal function of the parametert:

lim
g→`

gs2d = H2t, t ! 1,

2 −Î2p/t, t @ 1.
J s5.12d

This is because by increasingg one can always reach locally
the conditiont@g−2. Then, for t!1 one hasslocallyd the
regime of high-temperature fermionization and can use Eq.
s5.2d, whereas fort@1 the sample will be in the decoherent
classical regime described by Eq.s5.6d.

This has an interesting consequence at sufficiently low
temperaturest!1. For g@1, which is always the case for
far tails of the density distribution, the pair correlation re-
mains suppressed below the coherent levelsgs2d,1d rather
than approaches the value ofgs2d.2. This occurs although
the gas is locally not quantum degenerate at low density. One
thus sees that fermionization in which the Bose gas develops
antibunching withgs2d→0 is an explicitly low-temperature
phenomenon, when the temperature is scaled relative to the
interaction strength.

However, forg@1 the suppression of pair correlations is
not temperature independent. Instead, the numerical results
for increasingg converge to a single universal function oft.

D. Spatial variation

In the case of a trapped gas, the same diagram of Fig. 3
also describes the spatial variation of the gas within the
LDA. The parameterg now becomes position dependent,
gszd, due to the dependence on the densitynszd. In this dia-
gram, any point on thesg-td plane can be thought of as
representing the interaction parametergs0d evaluated at the
trap center, and the dimensionless temperaturet. This is suf-
ficient to completely characterize the properties of the
trapped gas. The subsequent local values ofgszd of such a
gas—as one moves from the trap center toward the tails of
the density distribution—can be represented by a horizontal
line drawn in the direction of increasinggszd at constantt.

This is shown in Fig. 6, where the four horizontal lines
correspond to four different temperaturest, while various

FIG. 4. Density profilenszd /ns0d and the local pair correlation
gs2dsz,zd as a function of the distance from the trap centerz/RTF, for
T=0.2TQ st=53104d and gs0d=1.14310−3. This corresponds to
case 1b in the diagram of Fig. 6 below.

FIG. 5. Local pair correlationgs2d as a function of the reduced
temperaturet, for different values of the interaction parameterg.
The solid lines are the exact numerical results, while the dashed
lines correspond to the approximate analytic result of Eq.s5.12d.

FINITE-TEMPERATURE CORRELATIONS AND DENSITY… PHYSICAL REVIEW A 71, 053615s2005d

053615-11



points along each line represent different “initial” values of
the interaction parametergs0d. The interval in the left lower
corner of the diagram shows the displacementsnotice the
logarithmic scaled for which the local value ofgszd is in-
creased by a factor of 10. This corresponds to a tenfold de-
crease in the densitynszd. For any given distribution with the
value ofgs0d in the center, this interval helps to immediately
determine what fraction of the density profile relative to the
peak densityns0d is contained within a certain regime.

In the very far tailssz→`d of any density distribution,
wherenszd vanishes andgszd→`, we always enter either the
DC or the high-temperature TG regime, depending on the
temperaturet. In addition, by considering a sample at any
fixed temperaturet, while the peak density is increasedfgs0d
is decreasedg, one can always reach the situation where the
bulk of the density distribution is in the GP regime where
gs2dsz,zd.1. Physically, this can be achieved by adding
more particles to the system while maintaining the same glo-
bal temperatureT, under constant couplingg. From Fig. 5 it
is clear that the density required may be relatively high, with
gs0d=0.01 being necessary to have a limiting value ofgs2d

ù0.9 at t=102, as an example. Forgs0d.1, there is no
coherent GP regime over the entire range of temperatures.

To illustrate different examples, we now calculate the
density profilesnszd /ns0d and the local pair correlations
gs2dsz,zd as a function of the distance from the trap centerz.
The distancez is conveniently plotted in units of the
Thomas-Fermi radius in the GP regime,RTF, given by Eq.
s3.15d. The relationship betweenz/RTF and the dimension-
less coordinatej=z/RT is: z/RTF=sÎ2/4d1/3t1/2gs0d1/2j. For
a gas with a given coupling constantg, the temperature pa-
rametert gives the measure of the absolute temperatureT. In
this sense, the examples witht.1 andt,1 in Fig. 6 repre-
sent high- and low-temperature limits, which we analyze
separately.

1. High-temperature case

In Fig. 7 we present examples of calculated density pro-
files nszd and local pair correlationsgs2dsz,zd, for the high-

temperature cases oft=53104 and 102. The examples
shown correspond to the points marked by circles 1a–1c and
2a–2c in the diagram of Fig. 6. For each temperaturet, the
sequence of points 1a, 1b, and 1csand similarly for 2a, 2b,
and 2cd corresponds to a decreasing peak density of the gas
fincreasing values ofgs0dg, while the absolute temperatureT
is kept constant. This can be achieved by decreasing the total
number of particlesN in the sample, at constantT.

The examples 1c and 2c represent a low-densitysnonde-
generated gas in the decoherent classical regime. The corre-
sponding density profiles are well approximated by a thermal
Gaussian Eq.s4.4d, and are omitted from the graphs for clar-
ity. The respective second-order correlation functions
gs2dsz,zd, display large thermalsGaussiand density fluctua-
tions with gs2dsz,zd.2.

Moving along the horizontal lines in the direction of de-
creasinggs0d sstarting from the points 1c or 2c for each
temperaturetd corresponds to increasing peak densities of the
gas. As a result one crosses the respective boundaries and
enters different regimes of quantum degeneracy shown in
Fig. 3. Here, the limiting regime asgs0d→0 at constantt is
the GP regime where the density profiles are well approxi-
mated by the Thomas-Fermi parabolas3.13d ssee the graphs
corresponding to 1a and 2ad, while the pair correlation in the
bulk of the density profile is close to that of the coherent
level gs2dsz,zd.1.

FIG. 6. Same as in Fig. 3, except with four horizontal lines at
different temperaturest. This explores different density profiles in
the parameter spacefgs0d-tg, where the points 1a–1c, 2a–2c, 3a–3c,
and 4a–4csmarked by circlesd are representative examples corre-
sponding to different values ofgs0d at the trap center, at different
temperaturest.

FIG. 7. Density profilesnszd /ns0d and the local pair correlation
gs2dsz,zd as a function ofz/RTF for a harmonically trapped 1D Bose
at different temperaturest : t=53104 sfirst columnd and 102 ssec-
ond columnd. The values of the interaction parametergs0d in the
trap center for each of the curves are as follows: 1a,gs0d=1.57
310−4; 1b, gs0d=1.14310−3; 1c, gs0d=0.196; 2a, gs0d=1.65
310−3; 2b, gs0d=2.31310−2; and 2c,gs0d=6.30. The dashed lines
represent the Thomas-Fermi inverted parabola Eq.s3.13d. The den-
sity profiles corresponding to the lower-density cases 1c and 2c are
well approximated by the thermalsGaussiand distribution for a clas-
sical ideal gas, Eq.s4.4d, and are omitted from the graphs for clarity.
The respective pair correlations for these low-density cases are al-
most constant along the entire sample and are given by the value of
gs2dsz,zd in the tails of the distributionz→`. Depending on the
temperaturet, these values can be determined using the results of
Fig. 5 atgszd@1 fsee the curve forgszd=50g.
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The intermediate values ofgs0d are represented by the
examples 1b and 2b which have density profiles that are
intermediate between a Gaussian and the inverted parabola.
The respective pair correlationsgs2dsz,zd also take interme-
diate values 1&gs2dsz,zd,2. In the example 2b, however,
the central part of the density profile is in the GP regime, so
that the departures form the coherent level of fluctuations are
only seen in the tails of the density profiles.

2. Low-temperature case

Next, we consider the low-temperature behavior, in which
evidence for the Tonks-Girardeau fermionization can occur.
Figure 8 represents examples of the density profiles and pair
correlations for a gas with lower values of the temperature
parametert : t=6310−2 and 6310−4. The examples shown
correspond to the points 3a–3c and 4a–4c in the diagram of
Fig. 6. As we see, forgs0d.1 the gas is in the Tonks-
Girardeau regime. Comparing this with the earlier high-
temperature examples, we see that for a given density with
gs0d.1, achieving the Tonks-Girardeau regime requires
lower temperatures,t,1.

Here again, the low-densityflarge-gs0dg examples of 3c
and 4c have density profiles that are well approximated by
the thermal Gaussian Eq.s4.4d, and are omitted from the
graphs for clarity. However, the pair correlations do not dis-
play large thermal fluctuations, but rather are suppressed be-
low the coherent level,gs2dsz,zd,1. This reflects the fact
that the gas is in the regime of high-temperature fermioniza-
tion. The example 4c corresponds to the lowest-temperature
parametert, which at constant peak densityfor constant
gs0dg corresponds to the largest interaction strengthg, and
hence the smallest value ofgs2dsz,zd.

The example 4b is deep enough in the TG regime, and we
see that the density profile is close to the Thomas-Fermi

square root of the parabola, Eq.s3.17d, while the pair corre-
lation is well below the coherent levelgs2dsz,zd!1. The ex-
ample 4a is for a smaller value ofgs0d shigher peak densityd,
which is closer to the boundary with the GP regime. As a
result, the shape of the density profile departs from the re-
spective TG result and is intermediate between the TG and
GP parabolas, while the pair correlation in the central part of
the density distribution increases. Finally, the examples 3b
and 3a are for intermediate values oft and gs0d which are
not well described by analytical approaches.

In all these examples the limiting behavior of the pair
correlationgs2dsz,zd in the far tails of the density distribution
is described by a universal function oft, as discussed earlier
ssee Fig. 5d. The overall conclusion that can be drawn from
this analysis is that the local pair correlationgs2dsz,zd can
vary between a broad range of values between zero and two
and has a rich built-in structure. It provides far more sensi-
tive information about the regimes of trapped 1D Bose gases
than the respective density profiles.

VI. TRAPPED GAS AT CONSTANT N

Here we investigate the properties of a trapped gas at
different temperaturesT and constant total number of par-
ticles N. Since the overall picture in terms of the density
profiles and the behaviour of the local pair correlation has
already been understood in terms of the diagram of Figs. 3
and 6, it is now sufficient to only monitor the changes in the
temperature parametert and the value of the interaction pa-
rametergs0d under conditions whenN is kept constant, and
then map these changes into theft-gs0dg plane.

Thus, for a given system with the couplingg, trap fre-
quency vz, and the total number of particlesN, our task
consists of calculating the density profilesnszd at different
temperaturesT, with the constraint that the total number of
particles remains unchanged. Once this is done, we identify
the respective values of the dimensionless temperature pa-
rametert and the local value ofgs0d and plot these on the
ft-gs0dg plane of Fig. 3.

More specifically, instead of performing this analysis for
absolute values of physical parameters, we first identify new
dimensionless variables for the temperature and interaction
strength that are more suitable under these conditions. The
new parameters we introduce are the global interaction pa-
rameterg̃ and the global reduced temperatureu:

g̃ = Smg2/s2"2d
N"vz

D1/2

, s6.1d

u = T/TQ, s6.2d

whereTQ=N"vz.
The definition of the global interaction parameterg̃ Eq.

s6.1d relies on the identity

u

g̃2 =
ts0d
g2s0d

= t. s6.3d

Using the definitions of the local parametersts0d andgs0d,
we see thatg̃ is the square root of the ratio of two energy

FIG. 8. Same as in Fig. 7, except fort=6310−2 sfirst columnd
and 6310−4 ssecond columnd. The values of the interaction param-
etergs0d in the trap center for each of the curves are as follows: 3a,
gs0d=0.323; 3b,gs0d=2.16; 3c,gs0d=2.583102; 4a, gs0d=5.13;
4b,gs0d=30.0; and 4c,gs0d=4.353102. The dashed lines represent
the Thomas-Fermi inverted parabola in the GP regime, Eq.s3.13d,
while the dotted lines correspond to the Thomas-Fermi square root
of the parabola in the TG regime, Eq.s3.17d.
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scales,mg2/ s2"2d and TQ=N"vz, as in Eq.s6.1d ssee also
Ref. f33gd.

The definitions of the dimensionless temperature and in-
teraction parametersu andg̃ both include the total number of
particlesN. This is more suitable for analyzing the properties
of the gas under conditions of changing temperature at con-
stantN. In Fig. 9 we present the results of calculation of the
density profiles for four differentsfixedd values of the global
interaction parameterg̃ while the temperatureu is changed
within a broad range of values, typically between 0.1&u
&10. The results are summarized by plotting the path of the
resulting local values of the interaction parametergs0d at the
trap center and the reduced temperaturet, in the parameter
space of Fig. 3.

For quantitative purposes, we also present the same data
in theu-1 /gs0d plane, which is shown in Fig. 10. While Fig.
9 identifies the local regimes of the gas with constantN, Fig.

10 helps to understand the properties of the gas in terms of
the variation in the global temperature parameteru. Note that
when g̃ is kept constant, the variations in the temperature
parametersu and t are essentially equivalent and scale asu
= g̃2t, according to Eq.s6.3d.

There are simple approximate relations between the glo-
bal and local interaction parametersg̃ andgs0d at high and
low temperatures. At high temperaturessu@1d the relation-
ship is given by

g̃ .
gs0d
Î4pu

su @ 1d. s6.4d

At low temperaturessu!1d, and in the limiting GP
fgs0d!1g and TG fgs0d@1g regimes, the relationship be-
tween g̃ and gs0d becomes independent ofu and is given,
respectively, by

g̃ . S 3

8Î2
D1/2

gs0d3/4, fu ! 1,gs0d ! 1g, s6.5d

g̃ .
1

p
gs0d, fu ! 1,gs0d @ 1g. s6.6d

This implies that the GP and TG regimes can equivalently
be defined viag̃ or gs0d. The GP regime corresponds tog̃
!1 or gs0d!1, while the TG regime will correspond tog̃
@1 or gs0d@1.

From Fig. 10 we see that at high temperatures and con-
stantg̃, the local interaction parametergs0d varies according
to gs0d~u1/2, i.e., linearly in the logarithmic scale of Fig. 10
and in agreement with Eq.s6.4d. This means that the re-
sponse of the peak densityns0d to temperature changes at
constantN follows the power law ofns0d~T−1/2, which is an
expected result for the thermal distribution of a classical
ideal gas, Eq.s4.4d.

As the temperature is reduced, the response ofns0d to the
temperature changes becomes modified, and the modification
is quite different depending on the interaction strengthg̃. For
weak interactionssg̃!1d, as the temperatureT is reduced
belowTQ=N"vz su=1d, the peak densityns0d first increases
more rapidly than in a thermal gas, and then the growth is
saturated as the temperature is reduced furtherfsee curves
s1d ands2d in Fig. 10g. At very low temperaturessu!1d, the
peak densityns0d approaches a constant value independent
of temperature. This is a typical behavior found in a weakly
interacting gas that undergoes quasicondensation and reaches
the GP regime. For intermediate and strong interactionssg̃
*1d, on the other hand, the response ofns0d to the tempera-
ture reduction is different. Instead of an initial speedup, the
growth of the peak densityns0d directly goes to the regime
of saturation, once the temperature is reduced below the glo-
bal temperature of quantum degeneracyTQ fsee curvess3d
ands4dg. At very low temperatures,ns0d again approaches a
constant value independent of the temperature and the gas
ends up in the TG regime.

From the paths of the curvess3d ands4d in Fig. 9, we see
that achieving the TG regime from a high-temperature clas-
sical gas by means of reducing the temperatureT at constant

FIG. 9. Diagram of the regimes of a trapped 1D Bose gas as in
Fig. 3, except that the curved liness1d–s4d represent the locations of
the interaction parametergs0d and the reduced temperaturet, for
four different sfixedd values of the global interaction parameterg̃
while the global temperatureu is changing. This represents four
different samples with fixed total number of particlesN and varying
absolute temperatureT. For each point on a given line, there exists
an associated density profile with the peak densityns0d correspond-
ing to the respective value ofgs0d, and the local valuesnszd corre-
sponding to the values ofgszd in the horizontal direction to the
right. The values of the global interaction parameterg̃ for each line
are s1d 0.002,s2d 0.01, s3d 1, ands4d 10.

FIG. 10. Variation of the peak densityns0d~1/gs0d as a func-
tion of the temperatureu=T/N"vz at constant total number of par-
ticles N. This is the same data as in Fig. 9 except plotted in the
1/gs0d-u plane, whereu= g̃2t.
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N requires large values ofg̃ in the first place. This can be
achieved by having a relatively small total number of par-
ticlesN or a small trap frequencyvz, according to Eq.s6.1d.

VII. EXPERIMENTAL CONSIDERATIONS

A. Average pair correlation

While the pair correlationgs2dsz,zd provides detailed in-
formation about the local correlation properties of a trapped
gas, its measurement as a function ofz may not be an easy
task in practice. Here, one usually probes the pair correlation
kC†szdC†szdCszdCszdl within a finite volume, e.g., via the
measurement of the rates of two-body inelastic processes
within the entire sample. This means that one probes the
integrated or averaged correlation properties of the gas, as
has been demonstrated in a recent experiment of Ref.f3g.

We are therefore motivated to study the average pair cor-
relation defined via

Gs2d =E dzkĈ†szdĈ†szdĈszdĈszdl =E dz gs2dsz,zdn2szd.

s7.1d

Here, an intersting question arises of whether this average
correlation has a simple relationship with the local pair cor-
relation at the trap centergs2ds0,0d. The reason to expect this
is the fact thatgs2dsz,zd under the integral in Eq.s7.1d is
multiplied by n2szd which vanishes rapidly as one ap-
proaches the tails of the density profile. The functiongs2d

3sz,zd near the trap center, on the other hand, varies slowly
and can be approximated by the value of
gs2ds0,0d. Therefore, we can approximategs2dsz,zd under the
integral by a constantgs2ds0,0d, thus reducing Eq.s7.1d to

Gs2d . gs2ds0,0d E dz n2szd. s7.2d

Thus, the average pair correlationGs2d can be expressed
via the local pair correlationgs2ds0,0d using a simple rela-
tionship, Eq.s7.2d. Note that this also requires an indepen-
dent evaluation of the integral of the squared density,
edz n2szd. Introducing a normalized average pair correlation
gs2d, we obtain

gs2d ;
Gs2d

E dz n2szd
. gs2ds0,0d. s7.3d

In Fig. 11, we plot the local pair correlation at the trap
centergs2ds0,0d and the normalized average pair correlation
gs2d as a function of the interaction parametergs0d, for four
different temperaturest. Each line monitors the values of
gs2ds0,0d andgs2d as one moves along the lines of constantt
in Fig. 6. Here, the sequence of points along the horizontal
axis refers to the value ofgs0d of the associated density
profile nszd, for which we first calculate the pair correlation
gs2dsz,zd as a function ofz fwhich includes the plotted values
of gs2ds0,0dg and then evaluate the integral in Eq.s7.1d to
obtain the average correlationGs2d, and hencegs2d. As we

see, in the limit of smallgs0d the pair correlation approaches
the coherent level of fluctuations withgs2ds0,0d.gs2d.1,
while at largegs0d it can take any value between zero and 2,
depending on the temperaturet.

By comparing the full and dashed lines in Fig. 11, we see
that the normalized average pair correlationgs2d can indeed
be well approximated by the local pair correlation in the trap
centergs2ds0,0d. This is an important result and may have
useful applications in practice. For example, it gives a direct
justification of the analysis performed in Ref.f3g where the
results of the measurements of three-body recombination
rates in a bulk trapped sample have been compared with
theoretical predictionsf16,19g for a uniform gas.

B. Practical example

Here, we return to the analysis of Sec. V, with reference to
Fig. 6, and complete it by providing the results of calculation
of the total number of particlesN. More specifically, we give
the results for the dimensionless ratioN"vz/T as a function
of the local interaction parametergs0d taken along the hori-
zontal lines of Fig. 6, i.e., at four differentsfixedd values of
the temperature parametert. This is shown in Fig. 12. For a
given trap frequencyvz and couplingg, each line corre-
sponds to monitoring the variation in the total number of
particlesN as a function of the peak densityns0d, at constant
temperatureT.

Figure 12 can also be viewed as giving the variation of
the interaction parameter at the trap centergs0d as a function
of N"vz/T, which in turn corresponds to monitoring the
change in the peak density of the gasns0d as the total num-
ber of particlesN is varied at constant temperatureT. Start-
ing from the regime of low particle numberssN"vz/T!1 or
high temperaturesu=T/N"vz@1d, we see that the increase
in N results in a linear increase of the peak density,ns0d
~N. This is an expected result for the thermal density distri-
bution of a classical ideal gas, Eq.s4.4d, and corresponds to
the linear dependence ofN"vz/T on gs0d as seen in Fig. 12.

As the number of particles is increased further and the
ratio N"vz/T goes through the critical regionN"vz/T.1
scorresponding to temperatures of the order of the global

FIG. 11. The local pair correlation at the trap centergs2ds0,0d
ssolid linesd and the normalized average pair correlationgs2d

sdashed linesd as a function of the interaction parametergs0d, for
four different temperaturest. For each temperature, the respective
lines monitor the values ofgs2ds0,0d and gs2d as one moves along
the lines of constantt in Fig. 6.
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temperature of quantum degeneracy,T.TQd the growth of
the peak densityns0d speeds up, for the lines corresponding
to t=53104 and 102. This speedup is most prominent in the
first case corresponding to very weak interactions, and re-
flects the fact that the gas undergoes quasicondensate forma-
tion where the added particles mostly go into the trap center
rather than into the tails of the density distribution. With
further increase ofN"vz/T, the growth of the peak density
ns0d is slower than in the classical gas case and the situation
is now reversed: the added particles mostly go into the tails.
Here, the gas is deep in the GP regime and the density dis-
tribution is given by the inverted parabola Eq.s3.14d.

For the cases oft=6310−2 and 6310−4, which at con-
stantT correspond to stronger interparticle interactions, the
change in the slope of the respective curves in Fig. 12 around
N"vz/T.1 represents the fact that the growth of the peak
densityns0d only slows down when the number of particles
is increased past this critical region. Here, the gas goes first
through the TG regime where the density profile is given by
the square root of the inverted parabola, Eq.s3.18d, and
eventually it enters the GP regimessee Fig. 6d with gradual
transformation of the shape of the density profile to the GP
parabola.

Apart from providing additional information about the
properties of trapped gases, Fig. 12 can also serve for quan-
titative analysis relevant to practice. As an example, we con-
sider a gas of87Rb atomssm=1.43310−25 kg,a=5.3 nmd
with the aim of identifying a set of physical parameters that
correspond to the conditions of the point 3b in Fig. 6. Here,
gs0d=2.16 andt=6310−2, which is an example of a mod-
erately fermionized gas. The pair correlationgs2dsz,zd is be-
low the coherent levelgs2dsz,zd!1, yet the gas is not in the
extreme low-temperature TG regime and therefore the den-
sity profile cannot be approximated by the square root of a
parabola. In this sense, this example would be easier to real-
ize in practice than the extreme TG regime.

We first consider the trapping potential withvz/2p
=20 Hz and v' /2p=80 kHz slz=2.42310−6 m and l'

=3.83310−8 md. With the 87Rb scattering length ofa=5.3
nm, givingg.2"v'a=5.62310−37 J/m, and with the value
of gs0d=2.16 that we are aiming at, this set of parameters
results in the peak 1D density ofns0d.3.353106 m−1 sand
hencen3D.1.8231020 m−3d. At this stage, we can identify
that the conditions of Eq.s2.4d for achieving the 1D regime
are satisfied.

Next, the aimed value oft=6310−2, together with the
value ofg found above, gives the required absolute tempera-
ture T.1.22310−31 J sin energy units, orT.8.84 nKd. We
next refer to the results of Fig. 12 and read off the value of
the dimensionless ratioN"vz/T.16.7 sor equivalently u
=T/N"vz.0.06d, which corresponds togs0d=2.16 on the
respectivet=6310−2 line. Finally, using the values ofvz
andT, we find that the required total number of particles here
is N.153.

We note that all of the above parameter values are close to
the conditions realized in recent experimentsf2–5g.

VIII. SUMMARY

In summary, we have obtained predictions for the corre-
lations and density profiles of a one-dimensional trapped
Bose gas at finite temperature. This allows previous results
for the uniform 1D Bose gas to be applied to the experimen-
tally relevant case of a harmonic trap. The calculations use a
local density approximation which is asymptotically correct
in the limit of a large trap with a sufficiently slowly varying
trap potential. We find that, in this limit, there is a similar
classification of different coherence regimes as in the uni-
form case.

Remarkably, the density variation across the trap does not
cause a dramatic change in the average correlation function
compared to the value at the trap center. This is because the
correlations are found to be relatively uniform in the high
density region near the trap center, which dominates any
trap-averaging measurement. This is particularly useful for
experiments that measure correlation functions through aver-
aging a nonlinear interaction over the length of the trap,
which is the simplest currently available procedure.

We expect that direct measurements ofgs2d that can test
the predictions of this fundamentally important many-body
theory will become feasible in the near future.
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FIG. 12. Variation ofN"vz/T as a function ofgs0d, for four
different values of the temperature parametert. For a given cou-
pling g and a fixedT, this monitors the variation ofN"vz as one
moves along the respective horizontal line in Fig. 6. Here, each
point along the horizontal line is being referred to the value ofgs0d
of the associated density profile, for which we first calculate the
densitynszd as a function ofz and then evaluate the resulting total
number of particlesN=enszddz to form the dimensionless ratio
N"vz/T.
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