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We calculate the density profiles and density correlation functions of the one-dimensional Bose gas in a
harmonic trap, using the exact finite-temperature solutions for the uniform case, and applying a local density
approximation. The results are valid for a trapping potential that is slowly varying relative to a correlation
length. They allow a direct experimental test of the transition from the weak-coupling Gross-Pitaevskii regime
to the strong-coupling, “fermionic” Tonks-Girardeau regime. We also calculate the average two-particle cor-
relation which characterizes the bulk properties of the sample, and find that it can be well approximated by the
value of the local pair correlation in the trap center.
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I. INTRODUCTION We have recently made use of the known exact solutions
to the uniform one-dimensional interacting Bose gas problem
The simplest investigations into a many-body system liketo calculate the exact local second-order correlation function
a Bose-Einstein condensate comprise studies of thermat all densities and interaction strengfi$-17. This is the
equilibrium properties, and the physics of small fluctuationsmost direct indication of fermionic behavior, since this cor-
around thermal equilibrium. For one-dimensional systemsfélation function is strongly reduced at low density and
very similar behavior is found using either photons in opticalStrong coupling—similar to the case of fermions, where it
fibers or ultracold atoms in waveguides. Although techniqueé’an'Shes_ exactly, dye to the Raul| exclusion prlnC|pIe.“ .
are not yet as experimentally advanced in the latter case, '€ first experimental evidence of reduced or “anti-
preliminary theory and some experimental measurementaunched” correlations in a 1D Bose gas has recently been
have already taken place. The atomic systems have the a emonstrated in Ref3]. However, current experiments typi-

. . . ; ) ally take place in traps, with a longitudinal trapping poten-
vantage that relatively long interaction times, large mterac-tial_ Provided the trap potential varies slowly, this environ-

tion strengths, and low losses are possible, thus potentially,o . i’ sufficiently close to a uniform one so that the exact

allowing stringent tests of underlying quantum correlations.gq | tions can still be used locally, in an approximation called
In this paper, we extend previous studies of correlations t@ne |ocal density approximation.

include the experimentally realistic case of atoms in a wave- | thjs paper, we make use of the local density approxi-
guide with a harmonic longitudinal confining potential. The mation (LDA) to calculate the density profile and finite-
treatment is at finite temperature, and makes use of exagémperature local pair correlation function of a 1D Bose gas
results for the uniform gas, together with a local densitytrapped in a harmonic potential. The results are valid for
approximation. sufficiently low longitudinal trap frequencies, and make use
For strong radial confinement, these types of system aref the exact solutions to the plane-wave Lieb-Liniger model
examples of one-dimension&llD) quantum gase$1-5|. [7] at finite temperature, together with the Hellmann-
They have the important property that in many cases theiFeynman theorem. We mostly focus on regimes with quan-
energy eigenstates are exactly solvdlile13], resulting ina  tum degeneracy. This requires temperatufesT,, where
greatly increased fundamental understanding of the relevaiia=N7Aw, is the temperature of quantum degeneracy of the
quantum field theory. For this reason, the study of 1D systrapped sample as a whold,is the total number of particles,
tems plays an important role in the physics of quantumandw, is the axial trap frequency.
many-body systems. It is possible to make first-principle pre- Our main results show how fermionization can be readily
dictions without introducing added approximations like per-detected through a simple measurement of the pair correla-
turbation theory. This permits direct experimental tests of theéion averaged over the trap. This is very close to the corre-
underlying many-body quantum physics, as has been demotation at the trap center as predictgtl] using the Lieb-
strated in photonics with squeezed solitons in optical fiberd.iniger uniform model, and in principle can be measured via
[14]. photoassociation of trapped atoms, or other related two-body
For ultracold atomic systems with repulsive interactions,inelastic processes whose rates are governed by the local pair
the most interesting and exciting feature is the predicted trancorrelationq 18]. In addition, an indirect measure of the pair
sition of an interacting gas of bosons to a “fermionized” correlations can be obtaingdl5,19 via the measurement of
Tonks-Girardeali6] regime at large coupling strengths and three-body recombination rates as recently demonstrated ex-
low densities. perimentally[3].
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Il. ONE-DIMENSIONAL BOSE GAS The 1D, regime is reached lif is much smaller than the
; - 2 1/2

One-dimensional quantum field theories have the imporém(zrg?tleg:ﬂgfr?“; \S/vcz\llel[t;ri(j:]trli\; o(r?:if)tlér:‘:)?sh o?trjga na e

tant and useful property that they are often exactly solvable; g € P 9

This is not generally the case for higher-dimensional quangorrelanons. On the same grounds aJa0 [15], one finds

tum field theories. Thus, the study of these 1D models car%hhat.for satl!ifylng this requirement it is sufficient to satisfy
lead to an insight into the nature of quantum field theory for € Inequafities
interacting particles that is not possible from the usual per- a<l, <{1/n(0),At}, (2.9
turbative approaches. In this section, we review the physics - -
of these exact solutions for interacting bosons in the unifornyvhere n(0)=(¥'(0)¥(0)) is the 1D (linean density in the
1D case, and introduce the theoretical framework for treatingenter of the trapz=0.
a nonuniform gas within the local density approximation. _ :
B. Ground-state solution for the uniform gas
We now give a brief overview of the uniforii/(z)=0]
Bose gas problem describing a gashbosons interacting
The study of exact solutions for the one-dimensional Bosgia a pairwise repulsivé-function potential in a 1D box of
gas started with Girardeau’s seminal wf{ on hard-core, |ength L with periodic boundary conditiofi7]. In the ther-
or impenetrable bosons. In this model, there is a remarkablﬁhodynamic limit (N, L — o, while the 1D linear density
and exact correspondence between the measurable correlan/L is kept constant the solution to the energy eigenstates
tion functions of free fermions, and those of strongly inter-js found[7] using the Bethe ansaf22]. In this solution, all
acting bosons. In the 1D Bose gas model witd-unction  relative wavefunctions are assumed to have a plane-wave
interaction, solved by Lieb and Linigér], the particles can form—except for finite changes in gradient at each collision

pass through each other, so they are no longer impenetrablghere the two particle coordinates are equal:
This provides a realistic description of a waveguide with

N .
transverse dimensions larger than the “core” of a particle in N Kz ic
. . = 4 - . — 7
the waveguide. Under these circumstances, there may only [ d del ' IEII 1 ki — ki sQnz - z)

be a single relevant transverse mode, yet particles are able to

A. Hamiltonian

exchange their positions as they propagate past each other. X Wl(z)W(z,) - W(zy)|0). (2.9
Thus, we start by reviewing the theory of a gas Mf o ) o
bosons interacting via afunction potential in one dimen- Here, we have used units in whidte2m=1, while intro-

sion. The 1D Bose gas has a short-range repulsive interactig#/cing the Lieb-Liniger notatior{7] of c=mg/h?. Also,

between particles which is characterized by just one couplin§9"z~2) is the sign function, an; is the “quasimomen-
constant. In second quantization, the Hamiltonian is tum.” The quasimomenta are determined from &fenction

slope-change requirements, thatkg, —k; is determined by

A h? “i.a . g S papa A the boundary conditions a;=z. In the limit of a large
H ‘%fd”z\y ﬁzq’+5de\P vy sample, and defining,;—k=1/[Lf(k)], one can approxi-
matef(k;) by a continuous functiofi(k) which is the density
" J dz \,(Z)\i,fﬁ,, (2.1) of qL_Jasimomenta. Th_e distribution of_qua_lsimomenta is_ then
obtained as the solution to the following integral equation:
- K
whereW(2) is the bosonic field operatam is the atom mass, 2mf(k) =1 +f " K(k-p)f(p)dp. (2.6)
g>0 is the coupling constant, and(z) is the trapping po- kg

tential which we assume is harmonic Wrt!(z)=mw522/2,

while w, is the trap oscillation frequency in the axial direc-

tion. To treat the uniform gas we s¥{z)=0. 2
For Bose gases in highly elongated cylindrical tréps K(k) = 2+ K2’

<w,, Wherew, is the frequency of the transverse harmonic

potentia) such that the sample can be described by the abov@nd ke is the maximum quasimomentum which determines

1D model, the coupling constagtis expressed through the the particle number density=N/L via

Here, the kernel functioK(k) is given by

(2.7

3D scattering length [20]. For a positive scattering lengéh ke
which is much smaller than the amplitude of transverse n:f f(k)dk. (2.9
direction zero-point oscillations, or the transverse harmonic ke
oscillator length, The corresponding ground-state energy is given by
I, =\h 2.2 e
L= VA, (22 Ey= Lf f()k2dK, 2.9
one has e
o2 and is often written ag&,=Nne(y), being an implicit func-
9= = 2ho, a. (2.3)  tion of n, via a dimensionless functiog(y) of the parameter
1 y=c/n.
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Restoring the physical units, this gives an energy per pardensityf(k)] and unoccupied or “hole” quasimomerteith

ticle: density f,(k)], i.e., f(k)=f,(k)+f,(k). The overall integral
52 equation now has the forrfusing units in whichi=2m=1
EYN=—ne(y), (210  andc=mg/#?)
where 27t (k) = 2a( fo(K) + fr(k)] = 1 +f K(k-p)fy(p)dp.
mg
=—. 2.1 2.1
Y 720 (2.11 (2.19

) ) ] . Hence, the particle density is obtained from the occu-
The dimensionless parametgrwhich characterizes the pieq or particle quasimomenta

strength of interactions is in fact the only parameter needed

to describe the uniform 1D Bose gas at zero temperature. *

The limit of y<1 corresponds to the weakly interacting ”=f fp(k)dk, (2.18

Gross-PitaevskiiGP) regime, where the mean-field Bogoliu- -

bov theory works well. The opposite limit of>1 corre-  while the total energy is now

sponds to the strongly interacting or Tonks-Girard€aG) .

regime, and ay— o0 one regains Girardeau’s results for im- _ 2

penetrable bosons. Bo= Lf . Fallokedk. (.17
The solution to the ground-state energy can be used,

together with the Hellmann-Feynman theorg23], for cal- However, there is also an entropy involved, since there
culating an important observable—the normalized local pai@re many wave functions that are nearly the same, within a
correlation given range of values df,(k) andf,(k). In fact, the number
. . of choices compatible with a givedk value is
@ _ Y @V'(2¥Y(2)¥(2)
g7(0) = 2 : (2.12 [f(k)L dk]!

. (2.189
fo(k)L dk] ! [fr(k)L dK]!
The pair correlation is found by taking the derivative of [Fpk0 11 [fa(k) ]
the ground-state energy with respect to the coupling constant Thus, the entropy is
g, owing to the fact that

S= Lf [fInf-flnf,—finfldk  (2.19

LR <d—H> LWV QYEYE), (213
dg dg 2 Minimizing the total free energif =E-TSgives the ther-
so that mal equilibrium distribution of holes and particles, where we
choose temperature to be in energy units, so kgatl. The
g?(0) = M (2.14) minimization at a fixed average particle number requires the
d use of a Lagrange multipliegt, and gives the result that the

The pair correlatiorg®(0) for the zero-temperature uni- distribution f(k) satisfies the integral equation

form 1D Bose gas has been calculated using the Lieb-Liniger o *
exact solutio 7] for e(y). The results are given in RdfL5]. 2mf ([ +e® T =1 +f Kk - p)fy(p)dp, (2.20
Here, we will extend these resulisee Sec. I)lto the case of -

a trappednonuniform) Bose gas using the local density ap- yhere the excitation spectruak) is calculated from a sec-
proximation, and to finite temperatures as well. ond integral equation

C. Uniform gas at finite temperature oK)= — o+ k2 - lj K(k=p)in(1+e=PMdp.  (2.21)
The excited states of the uniform 1D Bose gas can be 27 )

calculated in a similar way, with each excited state corre- be sh incide with the chemical ial
sponding to the removal of a quasimomentum withHere,u can be shown to coincide with the chemical potential

k| < ke—called a hole—and the creation of a quasimomen®f the system, while the entropy and the free energy per

tum with k| > ke. In 1969, Yang and Yangg] worked out the  Particle are found from
finite-temperature density matrix solution for the Lieb- 1(* 1 (*
Liniger model, by constructing the free energy and taking SN= —f [f(k)In(1 +e‘8(k)’T)]dk+—f fo(k)e(k)dk,
into account the entropy of all the different excited states. nJ— ntJ..
This was used in a subsequent w@@k to calculate numeri- (2.22
cally the pressure of the gas as a function of temperature.

At thermal equilibrium, we now assume that the density T
of quasimomentd(k) has no upper cutoff, and that it con- FIN= - _J In(1 +e=®M)dk. (2.23
sists of two types of terms—occupied quasimomedmiéh 2mJ_.,

053615-3



KHERUNTSYAN et al. PHYSICAL REVIEW A 71, 053615(2005

In addition, using the thermodynamic identit=—PL  we will extend these results to the case of a trapped gas using
+uN, one can arrive at the following simple result for the the local density approximation.
pressure of the gas:

T 0 . . . . .
P(u,T) = f In(1 + e 0k, (2.24 D. Quasiuniform approximation
2mJ_., In a quasiuniform approximation, we suppose that the
. ) .- _ system can be divided into small regions of sizewhich is
To calculate the pair correlatiogi(0) for a finite tem larger than a characteristic short-range correlation lehgth

pera[tlzjcrg ?_'as one can aggln ltjhse the Hgllrr;ann;l;eynfmarl'thel?]- each of these regions we assume that the inhomogeneity
rem - ere, we consider the canonical partition Tunction ¢ y,q gas is negligible so that it can be treated as a uniform

Z=exp-F/T)=Trexg-H/T), where the trace is over the gas.

states of the SyStem with a fixed partiCIe nUthrat tem- In this case, the trapping potentm(z) is rep|aced by a
peratureT. Taking the derivative oF ==T1n Z with respect  steplike functionV(zj)=mw?z*/2 which is constant within
to the coupling constarg we obtain each region fronz; to z;,; and undergoes steplike changes at
the boundaries of the adjacent regions. Here, the Aze

s = ET{e—ﬁ“Tﬁ] = E(w}ﬂ“(z)qﬂ“(z)qf(z)q/(z»_ (2.25  takes the role of the length from the Yang-Yang solution
Jg Z dg] 2 that applies to each region.
Introducing the free energy per partidie F/N and restoring We now consider an ansatz in which the overall density

the physical units, this givei<6] matrix has the structure of an outer product of canonical
, o) solutions, withN; being the average number of particles in
2 (dF 2m( of(y. 7 the jth region:
n“\dg/n7 AN\ dy /n,

Here, 7=T/T,4 is a dimensionless temperature parameter,

with T4=#?n?/2m being the temperature of quantum degen-
eracy for a uniform gas. Hence, we have

_2mT

PN = pMNu(z))pMa(z,) -+ p(z,y). (2.30

Next we look for an approximate solution in which the

effective Hamiltonian is assumed to introduce no coupling
between the regions. To obtain this we must now minimize
the total free energy given by

T= W (2.27 )
The pair of dimensionless parameteysand = completely Fn= 2 (Ej-T9). (2.31
characterize the properties of a finite-temperature uniform =1
gas. This requires us to include a constraint on the total particle

Alternatively, the local pair correlatiog®(0) can be cal- pumber:
culated within the grand canonical formalism. Here, we con-
sider the grand canonical partition functicd=exp-Q/T) N=SN
=Trexd (uN-H)/T], where Q=F-uN=-PL is the grand -1 !
canonical thermodynamic potential aflis the pressure. o i ) ) )
The trace is over the states of the system, at a fixed chemichl€NCe: it is appropriate to use a Lagrangian formulation with

(2.32

potential w and temperatur@. Taking the derivative of)= n
=T In Z with respect to the coupling we obtain L= (Ej =TS - moN,)). (2.33
~ ~ i=1
0 _AnZ  1_ ) a(uN-H) - :
0 g T Z ————exf(uN-H)/T] We note here that the Lagrangi#his now simply a sum

over independent regions, with each term corresponding to
that for a single uniform Bose gas. As we are only constrain-
ing the total particle number, not the number in each region,
the chemical potential is the same for each term. Since there
Thus, the normalized pair correlatig?(0) can be cal- s no explicit coupling between the regions, the Lagrangian

= %(‘I’T(Z)‘I’T(Z)‘I’(Z)‘I’(Z». (2.28

culated using is minimized when we satisfy the Yang-Yang equations in
2 (90 1/oP each separate region, but with the safgbal) chemical
g?(0) = —2(—> =- —2<—> (2.29  potentialu, at all locations.
Ln“\dg /1 n“\dg/ .t

This requires the use of EQR.24) for the pressure, which in
turn is found after solving the Yang-Yang integral equations
(2.20 and (2.21). In more detail, we have shown that for a large system,

The local pair correlation for a finite-temperature uniform where the density profile varies in a smooth way, the system
gas has been first calculated in REE6] using the exact behaves locally as a piece of a uniform gas. This can be
solutions to the Yang-Yang integral equatiof®20 and described locally as a uniform gas with chemical potential
(2.21), together with Eqs(2.23 and(2.26). In Secs. IV-VII,  equal to the local effective chemical potential

E. Local density approximation
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1, Bose gas can be characterized by a single dimensionless in-
m(2) = po=V(2) = po = Emwzzz, (2.34  teraction parametey, Eq. (2.11). Depending on its value,
one has two well-known and physically distinct regimes of
where u, is the global equilibrium chemical potential. guantum degeneracy. For<1, i.e., at weak couplings or

For the LDA to be valid, the short-range correlation high densities, the gas is in a coherent or Gross-Pitaevskii
length 1(z) should be much smaller than the characteristicregime. In this regime, long-range order is destroyed by
inhomogeneity lengtlh,(z). These length scales depend onlong-wavelength phase fluctuatiof—27 and the equilib-
the displacement from the trap centeand the LDA validity ~ rium state is a quasicondensate characterized by suppressed
criterion reads density fluctuations. For strong couplings or low densities,

v>1, the gas reaches the strongly interacting or Tonks-

n(2) (2.35 Girardeau regime and undergoes fermionizafi6yv]. The
|dn(2)/d4" ' term “fermionization” is used here in the sense that the wave
function strongly decreases as particles approach each other.

For a trappednonuniform gas one can introduce a local
interaction parameter

l((2) < linn(2) =

The short-range correlation lengff{z) is defined locally
via the density distributiom(z). At low temperatures, the
correlation lengthl.(z) can in generalirrespective of the

interaction strengthbe expressed via the local chemical po- mg
tential wu(2): 2) = 2’ (3.1
f
(D=7 (T<Ty. (2.36  which changes with the density distributiofz) and can be
Vmp(2) used for characterizing the local properties of the gas.

In the weakly interacting Gross-Pitaevskii regime the rela- From the definition ofy(2) it is clear that as one moves
tion between the chemical potentjalz) and the density(2) from the center of the trap toward the tails of the density
is 4(2)=gn(2), and we obtain that the correlation length co- distribution wheren(z) -0, the gas either enters the TG re-
incides with the healing |engtmc(z):ﬁ/\/m_ In the gime wherey(z)>1, or else the LDA itself breaks down.
strongly interacting Tonks-Girardeau regime one hég) Moreover, in theT=0 case the Lieb-Liniger solution
=2h2n2(2)/(2m), so thatl(z) ~ 1/n(z), neglecting the nu- Within the LDA gives a density profile t_ha_tt vamshbss(z_)
merical factor of order 1. At high temperaturégz) is of the ~ =0] beyond a certain distanéfrom the origin[28,29. This
order of the thermal de Broglie wavelengtl. distance is called the Thomas-Fermi radius and it is deter-
The condition(2.35 is sufficient for using the LDA for mlned from the conditionu(R)=uy—mw?R?/2=0 which
calculating the density profiles and local correlation func-9ives
tions. The reason is that these correlations, in particular the
two-particle correlatiory'?(0), are determined by the contri- R= (ﬂ)m (3.2
. o , : = 5| - .
bution of excitations which have energies of the order of the M}

chemical potential and wavelength of the orded ofHow- _ . - .
ever, this is not the case for all correlation functions. For SINceN(2) vanishes exactly g¢|=R[30], it is clear that

example, calculation of the finite-temperature single-particldn® LDA criterion(2.35 can only be satisfied up to a certain
correlation function would require a strong LDA condition in Maximum distance from the trap center=R-dz, displaced
which the sample size was much larger than the phase cofOM R by 62(6z<R). We would like therefore to determine
relation distancé27]. In this sense, one may call E@.35  the displacementz such that the LDA is valid for &7
the “weak” LDA criterion. However, within the LDA, no <R~ézand breaks down beyodd.:R— oz. _
correlation function can be calculated reliably over distance AS We are interested in calculating the density profiles and
scales that are comparable to the sample size. the local two—partlcle_ co'rrelatlon functhn, we will on'ly focus
Thus, the weak criterion of validity of the LDA requires O the weak LDA criterion, Eq(2.35. First, we rewrite the
that variations of the density occur on a length scale that i§"homogeneity length scale from E@.35 in the following
much larger thaih.(2), in which case the gas is treated locally €quivalent form:
as a piece of a uniform gas. From the definitiory;gf{(z), one
can easily see that the LDA is easier to satisfy in the center I (2) =n(z
. . . |nh( ) ( )
of the trap where the density profile is almost flat than near
the tails of the distribution where the density drops rapidly.
However, for measurements that average over an entire trap,
it is the central region that plays the most important role.

du(z)/dn(z)
du(z)/dz

Using the explicit expression(z) = uo—Mw2z2/2 and tak-
g its derivative, we obtain df=R-z(6z<R)

(3.3

n(2) ‘ du(@ | 3.0

me?R | dn(2)
Combining Egs.(2.36 and (3.4), one can rewrite the

Here, we analyze the implications of the LDA criterion LDA criterion |(z) <l;,4(2) in the following equivalent form
(2.39 for a zero-temperature gas. A=0, a uniform 1D (again neglecting numerical factors of order 1

Ill. ZERO-TEMPERATURE TRAPPED GAS linn(2) =
A. LDA criterion at T=0

053615-5
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(,u(z))s"zﬂd In w(2) - 3.9 B. Pair correlations at T=0
Mo

fhowdInn(z) Here we discuss the local pair correlation
Next, we note that in the limiting GP and TG regimes the @ (\ifT(z)\ifT(z)\if(z)\i'(z))
derivatived In u(2)/d In n(2) is equal, respectively, to 1 and 99(z2 = 2(2) (3.11
2, so in general £dIn w(z)/dIn n(z)<2. Therefore, the o
exact numerical value of this quantity can be replaced byn & zero-temperature trapped gas within the LDA. The cal-

unity in all regimesl and the LDA criterion becomes culations are done USing the solution to the Lieb-Liniger
oo equation(2.6) and the Hellmann-Feynman theoré#3|, Eq.
(M(Z)> Mooy 3.6 (2.14). Here,g@(0) is now replaced bg?(z,2) and y is to
Mo ho, ' ' be understood as the local value @fz). Thus, to calculate

g?(z,2) as a function of the distance from the trap center,
one can use the uniform results in which the interaction pa-
rametery(z) is found from the density profile(z), for dif-
ferent values ofy(0).

The implementation of the LDA, using the local effective
S5z fiw, |23 chemical potentiak(z), Eq. (2.34), is carried out by means
e ( ) (3.7) of first calculating the chemical potential as a function of

Finally, expandingu(z) near the edge of the cloud where
|7 =R-6z(6z<R), we obtain thatu(z)/u,=6z/R, so that
the criterion of applicability of the LDA is reduced to a
simple requirement:

R Ho n, and then inverting this dependence for obtainifg). This
For ¥(0) <1, the local value ofy(z) atz=R-éz is givesn(z) [and hencey(z)] as a function ofu(z), for a given
mgR 1o |23 value of thg interaction paramete(0) at the trap center. .
D)= Z == ‘y(O)( ) (3.8 Depending on the value of the coordinate-dependent in-
fn(0) 6z hw, teraction parametey(z), Eq. (3.1), we have the following
We see that ify(0) < (hw,/ up)?® then y(z) <1 atz=R- 6z, limiting behavior of the pair correlation function.

implying that the gas stays in the GP regime at all locations N the Gross-Pitaevskii limit of a weakly interacting gas,
z until the LDA breaks down. If, on the other hang(0) ~ the _pair correlation in the uniform case ig®?=1

> (hw,l po)? then y(2)> 1 atz=R- 6z so that the gas first ~2\y/m,y<1[15]. For a trapped gas, replacingby ¥(z)
approaches the TG regime and then the LDA breaks down9!ves

For y(0)> 1 the gas is in the TG regime at all locatians 2 /7),(0)

until the LDA breaks down. This is becaus€z) is always 9?2z =1-— =g Y2)<1. (3.12
larger thany(0), and hencey(z) > 1. 7 V1-ZIR

In the limiting cases ofy(0)<1 and y(0)>1, the LDA  where we have used the relationship betweéz) andn(z)
criterion (3.7) can be conveniently rewritten in terms #f0) and the fact that in the GP regime the density profile is given
and the total number of particléé. In doing so we use the by the familiar Thomas-Fermi parabola
fact that the chemical potential is given y=gn(0) for _ >
10)<1, and byuy=72h2n2(0)/ (2m) for y(0)>1. In addi- n(2) =n(0)(1 -Z/FF), (3.13
tion, we use the known relationship between the peak densitgndn(z)=0 for |z =R. Here, the peak density(0) and the
n(0) andN in each casg¢see Eqs(3.14) and(3.18 below]. radiusR are given by

As a result, we obtain that the LDA criterioi3.7) can be VAR
rewritten as follows, in the GP and TG regimes, respectively: n(0) = (W) , (3.19
( o )m~ s MO<1, (39
iz gn(0) - 7,(0)1/3,\12/3 ) . R:( 3Ng )1/3 (3.15
R 2mw, \2® 1 , 2mes) '
WZT = on ['y(O) >1]. (3.10 . o ] ]
7°n=(0) N In the Tonks-Girardeau limit of strong interactions, the

As we see, for any small but finitg(0) in the GP regime, Uniform gas pair correlation ig(2?24712/(3f), y>1[15]
the right-hand side of Eq3.9) can be made small by in- N the trapped gas case, replacipgy ¥(2) gives
creasing the total number of particlss For a fixed coupling 5 4731 - AIR?)
g and a constant density0) [such thaty(0) stays constaift 0?z2=—>5-—", ¥2>1, (319
the i : ; 3/4(0)

e increase of the particle numbermas to be accompanied
by a reduction of the trap frequenay. Thus, the ratioz/R ~ where we again used the relationship betwegér andn(z2)
can also be made small, so that that the LDA criterion in theand the fact that the density profile in the TG regime is given
GP regime[y(0)<1] is satisfied for almost the entire by the square root of the parabola:
sample, up to the locatior=R- 6z very close to the edge of _ _ 2\1/2
the cloud. Similar considerations apply to the TG regime (@) =n(0)(1 -Z/R%)™, (3.17
[¥(0)> 1], where the requirement on tilarge total number andn(z)=0 for |7 =R. Here, the peak density(0) and the
of particlesN is less stringent than in the GP regime. radiusR are
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0.8
S 06 ¥(0)=10 N
= Y(0)=1
T 04|  ¥0)=0.1 \
0.2 AN
0
0 0.5 1

z/R

FIG. 1. Examples of the density profilegz)/n(0) of a zero-
temperature 1D Bose gas in a harmonic trap as a function of the
dimensionless coordina#®R, for different values of the interaction
parametery(0). The solid lines are the results of the exact numeri-
cal solution of the Lieb-Liniger equations within the LDA. The
dashed and the dotted lines are the analytic results given by the
Thomas-Fermi parabola in the GP regime and the square root of the
parabola in the TG regime, respectively.

10
2mNw 1/2
mm:( 22> , (3.18 o
mh 0 02 04 06 08 1
z/R
24N 1/2 ) .
R= ( ) ) (3.19 FIG. 2. The local pair correlation of a trapped 1D Bose gas at

Mw, Zero temperatureg(z)(z,z), as a function of the displacement from

. . ) . the trap centerz/R, for different values ofy(0). The full lines are
In Fig. 1 we present the density profile) as a function the results of numerical calculation, while the dashed lines for

of the dlmenspnless coordinateR, for different values Of ¥(0)=0.01,0.1 andy(0)=10,100 are the respective analytic results
¥(0). The full lines represent the results of the numericalg; Egs.(3.12 and(3.16 shown for comparison.
calculation within the LDA, which reproduce the results of
Ref. [28], while the dashed and the dotted lines represent
respectively, the above analytic results in the GP and T
regimes.

Figure 2 shows the local pair correlatigf?(z,2) as a
function of z/R, for different values ofy(0). As we see, for

the case Of. wgak interactiong0) <1, the palr_correla}tlon S eral, we define the local interaction paramej¢z) and the
close to unity in the central bulk part of the distribution. This local reduced temperatun€z), according to

is an expected result for the coherent or GP regime. As one P ' 9
approaches the tails of the distribution, where the density is

ction parameter(0) and the reduced temperatur€D) in
he trap center.

These are the same parameters that are used in the uni-
form gas treatmentl6], Egs.(2.11) and (2.27), except that
now we define them via the local densityz). Thus, in gen-

reduced andy(z) becomes larger than 1, the gas locally ap- WD) =5, (4.1)
proaches the TG regime of fermionization. Here, the pair h°n(z)
correlation is suppressed below the coherent ley8l(z,2)
<1 _ _ _ T 2mT
For the cases wherg0) =1, including the TG regime of 7(2) (4.2

ST 7202’
v(0)>1, the pair correlation is suppressed across the entire Ta@  #°1°(2)

sample. In the limity(0) — «, the gas acquires pronounced whereT,(2)=#2n%(2)/ (2m) is the local temperature of quan-

fermionic proper'ties so that the wave function strongly'de—t_um degeneracy that corresporidiscally) to the conditions
clgases as particles approach each other, thus resulting \fhere the mean interparticle separation becomes of the order
99(z,2-0. of the thermal de Broglie wavelength.
The values of these parameters at the trap cept@y,and
IV. FINITE-TEMPERATURE TRAPPED GAS 7(0), completely characterize all relevant properties of the
gas within the LDA, including the associated density profiles
n(z), the resulting total number of particl®s as well as the
An obvious choice of dimensionless interaction and tem-correlation functions and the thermodynamic properties.
perature parameters for describing a trapped 1D Bose gas A completely equivalent pair of the interaction and tem-
within the LDA consists in using the local value of the inter- perature parameters, which is, however, more suitable for

A. Key parameters
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practical purposes is the local value ¢fz) and a new tem- 2T
perature parametérdefined via Rr= M2 (4.9
z
m0) n2) = T 5 4.3 In this high-temperature limit, the correlation length is
TH0) A meh2r?) given by the thermal de Broglie wavelengt, so that the

According to this definition, the temperature is measured if-PA criterion (2.39 gives

units of the characteristic enerdiy=mg?/(2#2).
The advantage of usirigas the dimensionless temperature T <2_T) _T

; e : : z< =—R; (T>Ty. (4.6)

parameter is that it is independent of the density and gives a ho, mw§ haw,

direct measure of the global temperature of the gas, which in

equilibrium is the same for the entire sample. This allows usSince T>To=Nfiw, implies thatT>%w,, the above LDA

to easily explore the “interaction-temperature” parametecriterion can be satisfied for all locatiorzsfrom the trap

spacq y(0)-t] in a systematic way. For example, consideringcenter up to distances equal to several characteristic widths

different values ofy(0) while t is kept constant would cor- Ry. For sufficiently large total number of particlés the

respond to physical conditions under which the peak densityatio T/%w, will be even larger so that the LDA will be valid

of the gasn(0) is varied while the absolute temperatdrés ~ for even larger distance from the trap center.

kept unchanged. An experimental technique that imple- In the opposite limit of low temperaturds<Tq [in which

mented this approach for achieving a Bose-Einstein condersase 7(0)=8y24(0)T/(3Ty) for $0)<1, and =(0)

sation in a 3D gas has recently been demonstrated in Ref: 772T/TQ for v(0)> 1], the density profilen(z) can be ap-

[31]. proximated by two contributions. The first one is for the
Other alternative choices are possible for characterizingentral bulk part which will be close to th€=0 density

the interactions and temperature of a trapped gas in dimemprofile up to a certain distande/ = R-6z(6z<R) from the

sionless units. For example, to characterize the system atap center. HereR is the zero-temperature Thomas-Fermi

different temperatures while the total number of particld$  radius, Eq.(3.2). The second contribution is for the tails of

is kept constant, one can define an alternative pair of globahe distribution which can be approximated by a thermal

parameters which are more suitable for this cése Sec. Gaussian.

VI). Here, the global temperature parameter can be defined As before, we will focus on the weak LDA condition

as 6=T/Tg, where To=NfAw, is the global temperature of (2.35 involving the correlation lengti.(z). For the central

quantum degeneracy of a trapped d@asenergy unitsks  part of the sample, up to distancg=R-6z(6z<R), we

=1, wherekg is the Boltzmann constantirrespective of the  can use the LDA criterion derived for the zero-temperature

interaction strength, a harmonically trapped Bose ga¥ at gas, Eq.(3.7). In the weakly and strongly interacting limits

>Tq obeys the classical Boltzmann statistics, whereas fothis can be rewritten—as before—in terms of the interaction

TSTQ guantum statistical effects become important. This iSparametery(O) and the total number of particlés[see Egs.

clearly seen in the limit of a trapped ideal §ag0) —0] and  (3.9) and(3.10].

in the opposite limit of a strongly interacting g4s(0) For the Gaussian tails of the distribution, i.e., at distances

—]. In the latter case, the problem maps onto the trappety| >R, where the local correlation length is given hy, we

gas of noninteracting fermiong6]. So, in both limitsT,  use the above high-temperature result @) and rewrite it

appears explicitly as the temperature of quantum degenerady terms of the Thomas-Fermi radi®sand the global chemi-

for the trapped sample as a whole. cal potentialwg. As a result, the LDA criterion for the Gauss-
o . ian tails of a low-temperature gas can be written in the fol-
B. LDA criterion at finite T lowing form:

Here we analyze the local density approximation for a

finite-temperature gas, and obtain simple criteria for its va- T \Y?( o \Y2
lidity in the limiting cases of very high and very low tem- z< (ﬁw ) (ﬁ) R (T<Ty. (4.7
peraturesT>To and T<T,. z z

In the high-temperature limitT>Tq [in which case In the GP regimé y(0) < 1], whereuy=gn(0), this gives
7(0) =4m(T/T)?], the density distributiom(z) can be ap-
proximated by a Gaussian profile in all regimes, as the inter- ZIR < #0)Y°N. (4.8

action between the particles is negligible compared to their

thermal kinetic energies. Fo{ particles at temperatufin  Thus, in order that the LDA works in the tails of the density
a harmonic trap of frequenay,, the density profile is deter- distribution (|2 >R) in the GP regime, one has to have
mined by the thermal distribution for a classical ideal gasy0)Y2Ns> 1. This requirement can always be satisfied with a

described by Boltzmann statistics: sufficiently large number of particleN. For example, for
N 7(0)=3.8x 1072 [which can be obtained, for example, with
Ni(2) = =—-exp(~ ZIR?), (4.4 40)=0.01 )1 andT/T¢=0.01, according to the relationship
VTR 7(0) = 8\’2y(0)T/(3TQ) valid in this regimé one would need
where the radiu®; characterizes the width of the Gaussianto have N=870 in order to satisfy the LDA criterion for
and is given by distanceR=z<20R.
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In the TG regime [y(0)>1], where puq
= m?h?n?(0)/(2m), Eq. (4.7) again reduces to the condition
given by Eq.(4.8). Thus, in the TG regime the validity of the
LDA in the tails of the distribution again requires that
70)Y2N>1. However, now we have{(0)==>T/Tq, for T
<To.

To summarize, in the low-temperature limit the LDA cri-

PHYSICAL REVIEW A 71, 053615(2005

n@ _¢0)
n(0) ¢2
This makes the output results scalable with respect to the
physical parameters, rather than dependent of their absolute

values.
The total number of particles in the system is calculated

(4.1

terion can be easily satisfied for the central bulk part of thefom the resulting density profila(z) via

density distribution and for the Gaussian tails. This leaves

the question of validity of the LDA in the low-density region
nearz=R, where the density may vary more rapidly.

N:fn(z)dz. (4.12

We note, however, that at small finite temperatures the Using the dimensionless coordinatend Eq.(4.11) this

variation of the density profile arourmER is more smooth
than in theT=0 limit, so that the LDA criterion may still be
satisfied in this region, in contrast to tiie0 case where the
LDA necessarily breaks down as one approaches the edge
the cloud az=R. More importantly, the LDA becomes valid
again for distances past the small critical region aroand
=R, i.e., in the tails of the density distribution. This means
that the results of calculation of the pair correlation function
9?(z,2) at small finite temperatures should be valid every-
where except in a small region arourrR. At high tempera-
tures the LDA criterion becomes less restrictive, and can b
satisfied for the entire sample.

C. Calculating the local pair correlation and density profiles

The local pair correlatiomy'?(z,2), Eq. (3.11), as a func-
tion of the locatiorz from the trap center is calculated using
Eq. (2.29 in which w is replaced by the local chemical po-
tential u(z)=uo—V(z) and wheren is the local densityn(z).

The calculation is based on iterative numerical solution of

the Yang-Yang exact integral equatidi@g for the excitation

can be rewritten as

_ Rmg (™ A0

= d¢, (4.13
of 290 ). HRH%
so that the dimensionless rafig,/ T is given by
T zf” dé¢
== —_— (4.19
T At HRsd)

dhis gives a relationship between the global and local dimen-

sionless parameters and allows us to present the final results
in a scalable fashion, rather than in terms of the absolute
values ofN, T, w,, andg. Here, the desired values ®f/T

can be achieved by varying the ratig/T of the input pa-
rametersug andT.

V. DENSITY PROFILES AND PAIR CORRELATIONS

A. Regimes in a uniform gas

In order to understand the results for the pair correlations
g@(z,2) of a trapped 1D Bose gas, we first recall the classi-

spectrum and for the distribution function of quasimomentaication of the regimes of aniform gas. In Ref[16], these

Egs.(2.20 and(2.21). For a given set of values gi(z), T,
andg, this gives the resulting density profil€z) Eq. (2.16)
and the pressur® Eq. (2.24. DifferentiatingP with respect
to g gives the local pair correlatiog?(z,2).

A convenient way to implement the numerical algorithm

were identified using the results for the local pair correlation
g@ in terms of the interaction parametgrand the reduced
temperaturer. Here, we give a brief summary of these re-
sults, except that we rewrite them in terms of the parameters
y andt=7/ 2, instead ofy and 7. This is completely equiva-

for solving the Yang-Yang equations is via a dimensionlessent to the original pair. The new parameterandt are more

coordinate

z

:Er, (4.9

3

where the length scal@; is the thermal width of the classi-
cal Gaussian distributiony(z), given by Eq.(4.5).

Using the dimensionless coordinafethe local chemical
potential can be rewritten as

(Rré) = po = TE.
After setting up a lattice of values,{£}, the solution to the

(4.10

Yang-Yang equations proceeds as in the case of a uniform
gas, with the input parameters being an array of the values of

the local chemical potentiak,=u(Rr&), the temperaturd,
and the coupling parametgr as described above.

suitable for exploring the properties of ttrappedgases, as
discussed in Sec. IV A.
The diagram representing these different regimes for a
uniform 1D Bose gas in the parameter spéaed) is shown
in Fig. 3. The regimes are classified as follows:
Strong-coupling regimeln the strong-coupling TG re-
gime of fermionization, where/>1 and the temperaturé
<T4(7<1ort<y2), we only have a small correction com-
pared to the zero-temperature re§ig,32:

4

i

3

Y't?

=

™

ik

Y

g? = } t<y? y>1, TG.

(5.1)

In the case of strongly interacting nondegenerate bosons,
where y>1 and the temperaturé>T4 (1<7<? or y?

The final numerical results are then presented in terms o&t<1), we have the regime of high-temperature fermioniza-

the dimensionless parameteyf)) and the temperature pa-
rameterr(0) (or t), where we note that

tion. Despite the temperatue> Ty, the local pair correla-
tion is strongly suppressd@'® <1) [16,32:
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10° 3 27\ 12

\ ‘\@F&\\ DC g?=2 _(T) , t>maxy 31, DC. (5.6
10 SO DC
12l ap The result in the DC regime remains valid for largepro-

3 AN vided 7> 92 (or t>v7?) [16], and we can combine the re-
- 10° [, I — quired conditions on temperature \tiz maxy 2, 1).

107 L\ TG (high-T)

. b B. Regimes in a trapped gas
10° P . .

GPa Lo In a harmonically trapped finite-temperature 1D Bose gas

107° S :O 2‘ TE— we again have a strong-coupling regime, weak-coupling GP

1010 10 18 160 100 10 regime, and a decoherent regime. The results for the local

pair correlationg®(z,2) in the first two regimes are easily

FIG. 3. Diagram of different regimes of a uniform 1D Bose gas ©Ptained from Eqgs(5.1~(5.4) by replacing the interaction
in the (y-t) plane. The labels TG, GP, DQ, and DC refer to the Parametery by the local z-dependent valuey(z) of the
Tonks-Girardeau, Gross-Pitaevskii, decoherent quantum, and decBapped sample. However, it is convenient to rewrite the re-
herent classical regimes, respectively. Although all transitions ar&ults for the local correlatiog'?(0,0) in the trap center in
continuous, for purposes of discussion we classify the distinct reterms of 4(0) and the temperature parametée=T/Tg,
gimes as follows: TGy>1,t<y% TG (high-T), y ><t<1; GPa, where To=Nfw, is the global temperature of quantum de-
y<1t<y% GPb, y'<t<y3?2 DQ, y3¥?<t<y? DC, t generacy of the sample as a whole.
>max{1,y 2. Strong-coupling regimeln the strong-coupling TG re-
gime, wherey(0)> 1 andT < T, the density profile is given
g?=2t, y?<t<1, TG(high-T). (5.2) by the Thomas-Fermi result E¢3.17), and this allows one
] . ) i to establish the relationship between the temperature param-
Gross-Pitaevskii regimein the GP regime, wherg<1,  gierst andg, usingr(0) = w?T/ Ty valid in this regime. Thus,

the chemical potential igx=ng and at temperature§<u t= 20/ 12(0) and Eq.(5.1) transforms into
=2T4y (r<y or t< y1) the finite-temperature correction to

the zero-temperature result is again very srit]: @ 47 [ ? ]
0,0 = 1+—6¢, 5.
90,0 3,200) 2 (5.7
2 — m - here#<1/=?, and y(0)>1
(2) 1-=1 +_t2 /2, < 1, t< l’ GPa. where w, b4 .
d 77\7 24 4 4 4 For the regime of high-temperature fermionizationTat

(5.3 >To, the density profile is given by the thermal Gaussian
Eq. (4.4), so that {0)=4m(T/Tg)? and hence t

For T> u=2Tqy (7> or t> 1), the finite-temperature  ~ 47762/ 4%(0). Therefore, Eq(5.2) transforms into
correction is the leading one. It is important to recognize that

the upper bound for the GP regime extends only up to tem- 20,0 = 8m P 5.9
peratures of the order af~\yTy (7~ 1y or t~y*?), and gt Y40) :

not to T~ Ty. Here, the temperaturg, is responsible for the —

presence of the quantum degeneracy, @t for the pres-  Where 1< 6<y(0)/ vam. .

ence of phase coherence. Thus, fdEpu, the finite- Gross-Pitaevskii regimen the GP regim¢ (0) < 1], for

temperature_GP regime lies within the temperature intervaﬂl?k:nperatgres-rf To tthc(ja den;n?/ F&?g'g 'SWg"iﬁn bz the

T yy<T< 9Ty (y< 7=y or y1<t< %2, and the pair omas-Fermi inverted parabola E@.13. We then have

correlation here is given bj16] 70)=8y2(0)T/(3Tq) or t=8y26[1(0)]"¥%/3, so that Eq.
(5.3 transforms into

1 2 —— 167
D 2 424232 Lot 4302 @(0,00=1-=1§0) + &,
g 1+2ty3 , yi<t<y32 GPb. (5.4 g b 2740

Decoherent regime>max(1,y %?). Due to the existence whered<3/y(0)/(812)[ 6<0.27,/%(0)] and (0) < 1. Simi-
of two characteristic temperatures in the 1D uniform gaslarly, Eq. (5.4) transforms into
VT4 andTy, at temperature¥ higher thanyyT, one has two =
subregions. For temperatures in the intervalTy<T<Ty 9?(0,0=1 +ﬂ0' (5.10
(Vy<7<1 or y32<t<y?) the gas is in the decoherent 3
quantum(DQ) regime, while forT> T, (r>1 ort> vy the
gas is in the decoherent classi¢BIC) regime. In both cases
the local pair correlation is close w2 =2 [16]:

(5.9

where 3/(0)/(8v2) < §<312/80.27/(0) < 6<0.27.

It is important to emphasize that for smal0) and mak-
ing the temperature sufficiently lo@l/ To=60<1) the gas is
always in the Gross-Pitaevskii regime.

g? =2-4/t?y), y3<t<y? DQ, (5.5 Decoherent regimeFor T>Tg, a harmonically trapped
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FIG. 4. Density profilen(z)/n(0) and the local pair correlation
g(z)(z,z) as a function of the distance from the trap cemi@g, for
T=0.2To (t=5x10% and ¥(0)=1.14x 1073, This corresponds to
case 1b in the diagram of Fig. 6 below.
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FIG. 5. Local pair correlatiom? as a function of the reduced
temperaturet, for different values of the interaction parameter
The solid lines are the exact numerical results, while the dashed
lines correspond to the approximate analytic result of (BdL2).

C. Variation with temperature

In Fig. 5, we illustrate different regimes by plotting the
local pair correlationg®® as a function of the temperature
parametet, for different values ofy.

For sufficiently largey the pair correlation approaches a
universal function of the parameter

2t, t<1,
2 —\2mlt,

limg? = s 1

y—°

(5.12

1D Bose gas is in the decoherent classical regime. Here, thENis is because by increasingone can always reach locally

density profile is given by the thermal Gaussian &g4), so
that 7(0) =4m(T/Tg)? and hencet=4x¢?/y*(0). Accord-
ingly, Eqg. (5.6) transforms into

N

(5.11)

where > max1,y(0)}, neglecting a numerical factor of the
order of 1. Thus, the validity of this result requir@s-1 for
¥(0)< 1, and 8> y(0) for (0)>1.

In the case of sma(0) and at temperatureb=<T,, one
has a crossover from the classical decohef@mt Ty) re-
gime to the GRT<Tg) regime. The properties of the gas in
this region can be treated as containitagally) features of

the decoherent quantum regime of the uniform gas. An ex-

the conditiont>y™2. Then, fort<1 one has(locally) the
regime of high-temperature fermionization and can use Eq.
(5.2, whereas fot>1 the sample will be in the decoherent
classical regime described by E.6).

This has an interesting consequence at sufficiently low
temperatures<<1. For y>1, which is always the case for
far tails of the density distribution, the pair correlation re-
mains suppressed below the coherent lgg&) <1) rather
than approaches the value g =2. This occurs although
the gas is locally not quantum degenerate at low density. One
thus sees that fermionization in which the Bose gas develops
antibunching withg® — 0 is an explicitly low-temperature
phenomenon, when the temperature is scaled relative to the
interaction strength.

However, fory>1 the suppression of pair correlations is

ample illustrating this behavior is given in Fig. 4 where we not temperature independent. Instead, the numerical results
plot the density profilen(z) and the local pair correlation for increasingy converge to a single universal function tof

9@(z,2) as a function ofz/ Ry where Ry is the Thomas-

Fermi radius in the GP regime. These are calculated numeri-
cally using the solution to the Yang-Yang integral equations,

with a value ofy(0)=1.14x 102 at the trap center.
The temperature in this example 7=0.2Tg, which is

D. Spatial variation
In the case of a trapped gas, the same diagram of Fig. 3

also describes the spatial variation of the gas within the

LDA. The parametery now becomes position dependent,

intermediate between the decoherent classical and the GR2), due to the dependence on the densi®). In this dia-
regimes. Locally, the tails of the density profile are in thegram, any point on théy-t) plane can be thought of as
decoherent classical regime. On the other hand, the centregpresenting the interaction parame¢0) evaluated at the
part has features of the decoherent quantum regime. The fidgrap center, and the dimensionless temperatuféis is suf-

ure for g?(z,2) shows that fluctuations well above the co- ficient to completely characterize the properties of the
herent level, withg®(0,0) = 1.5, can occur even at tempera- trapped gas. The subsequent local values/(af of such a
tures below the transition to a quantum gas. However, witlgas—as one moves from the trap center toward the tails of

further temperature reduction well beldwy, the density pro-

the density distribution—can be represented by a horizontal

file shrinks and one always has a coherent GP regime. Fdine drawn in the direction of increasingz) at constant.

smaller values ofy, the temperature at which the coherent

This is shown in Fig. 6, where the four horizontal lines

regime emerges must in general be calculated numerically.correspond to four different temperaturgswhile various
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FIG. 6. Same as in Fig. 3, except with four horizontal lines at
different temperatures This explores different density profiles in 00 T2 5 a4 00 y 5
the parameter spa¢e(0)-t], where the points 1a-1c, 2a—2c, 3a-3c, 2R 2R,

and 4a—4dmarked by circlesare representative examples corre-
sponding to different values of(0) at the trap center, at different

FIG. 7. Density profilesi(z)/n(0) and the local pair correlation
temperatures.

g'?(z,2) as a function ofz/ Ry for a harmonically trapped 1D Bose

at different temperatures t=5x 10* (first column and 16 (sec-
points along each line represent different “initial” values of ond column. The values of the interaction parametgd) in the

the interaction parameter(0). The interval in the left lower trap center for each of the curves are as follows: #@)=1.57
corner of the diagram shows the displaceméndtice the ~ X107% 1b, %(0)=1.14x10°% 1c, %(0)=0.196; 2a, »(0)=1.65
logarithmic scalg for which the local value ofy(z) is in- X107 2b,#(0)=2.31x 10°% and 2¢,(0)=6.30. The dashed lines
creased by a factor of 10. This corresponds to a tenfold dg’éPresent the Thomas-Fermi inverted parabola(B4.3. The den-
crease in the density(z). For any given distribution with the sity proflles_correspondlng to the Iower_—den_sm_/ cases 1c and 2c are
value of »(0) in the center, this interval helps to immediately well approximated by the therméBaussiandistribution for a clas-

. . . . . sical ideal gas, Eq4.4), and are omitted from the graphs for clarity.
determine yvhat f_ractlon Qf the Qer_lsny profllle rela_tlve to theThe respective pair correlations for these low-density cases are al-
peak densityn(0) is contained within a certain regime.

) ; A most constant along the entire sample and are given by the value of

In the very far tails(z—<) of any density distribution, 42 5 in the tails of the distributiore— . Depending on the
wheren(z) vanishes and/(z) —, we always enter either the temperature, these values can be determined using the results of
DC or the high-temperature TG regime, depending on thesig. 5 aty(z)>1 [see the curve for(z)=50].
temperature. In addition, by considering a sample at any
fixed temperaturé, while the peak density is increasel0)  temperature cases df=5x10* and 16. The examples
is decreasefd one can always reach the situation where theshown correspond to the points marked by circles 1a—1c and
bulk of the density distribution is in the GP regime where 2a—2c in the diagram of Fig. 6. For each temperatutbe
g?(z,2=1. Physically, this can be achieved by addingsequence of points 1a, 1b, and (knd similarly for 2a, 2b,
more particles to the system while maintaining the same gloand 2¢ corresponds to a decreasing peak density of the gas
bal temperaturd, under constant coupling. From Fig. 5it  [increasing values of(0)], while the absolute temperatufe
is clear that the density required may be relatively high, withis kept constant. This can be achieved by decreasing the total
¥(0)=0.01 being necessary to have a limiting valueg8?  number of particles\ in the sample, at constaift
=0.9 att=10%, as an example. Foy(0)>1, there is no The examples 1c and 2c represent a low-densignde-
coherent GP regime over the entire range of temperatures.generatg gas in the decoherent classical regime. The corre-

To illustrate different examples, we now calculate thesponding density profiles are well approximated by a thermal
density profilesn(z)/n(0) and the local pair correlations Gaussian Eq4.4), and are omitted from the graphs for clar-
g?(z,2) as a function of the distance from the trap cemter ity. The respective second-order correlation functions
The distancez is conveniently plotted in units of the g®(z,2), display large therma(Gaussiah density fluctua-
Thomas-Fermi radius in the GP reginie, given by Eq. tions with g?(z,2) =2.
(3.195. The relationship betweer/ R and the dimension- Moving along the horizontal lines in the direction of de-
less coordinat€=z/Ry is: z/Rre=(12/4)3tY24(0)2%¢. For  creasingy(0) (starting from the points 1c or 2c for each
a gas with a given coupling constagtthe temperature pa- temperature) corresponds to increasing peak densities of the
rametert gives the measure of the absolute temperafule  gas. As a result one crosses the respective boundaries and
this sense, the examples with- 1 andt<<1 in Fig. 6 repre- enters different regimes of quantum degeneracy shown in
sent high- and low-temperature limits, which we analyzeFig. 3. Here, the limiting regime ag(0) — 0 at constant is
separately. the GP regime where the density profiles are well approxi-
mated by the Thomas-Fermi parab¢8l3 (see the graphs
corresponding to 1a and Ravhile the pair correlation in the

In Fig. 7 we present examples of calculated density probulk of the density profile is close to that of the coherent
files n(z) and local pair correlationg®(z,2), for the high- level g?(z,2)=1.

1. High-temperature case
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1=6x1072 t=6x107* square root of the parabola, E®.17), while the pair corre-

1 G n lation is well below the coherent levgl?(z,2)<1. The ex-

. jma ./4b ample 4a is for a smaller value f0) (higher peak densily
g ¢ 3b L\ e which is closer to the boundary with the GP regime. As a
] 03 X, ; result, the shape of the density profile departs from the re-

spective TG result and is intermediate between the TG and
GP parabolas, while the pair correlation in the central part of
the density distribution increases. Finally, the examples 3b
and 3a are for intermediate valuestoand y(0) which are

3a
= 06 not well described by analytical approaches.
& In all these examples the limiting behavior of the pair
"o 03 3b correlationg®(z,2) in the far tails of the density distribution
3c

is described by a universal function pfas discussed earlier
0 10 (see Fig. 5. The overall conclusion that can be drawn from
0 0.5 1 0 0.5 1 . L . .

R > this analysis is that the local pair correlatigff'(z,z) can

™ ™ vary between a broad range of values between zero and two
FIG. 8. Same as in Fig. 7, except for6x 1072 (first column and has a rich built-in structure. It provides far more sensi-

and 6x 1074 (second column The values of the interaction param- tive information about the regimes of trapped 1D Bose gases
etery(0) in the trap center for each of the curves are as follows: 3athan the respective density profiles.
(0)=0.323; 3b,y(0)=2.16; 3c,y(0)=2.58x 10%; 4a, y(0)=5.13;
4b, ¥(0)=30.0; and 4cy(0)=4.35x 10. The dashed lines represent VI. TRAPPED GAS AT CONSTANT N
the Thomas-Fermi inverted parabola in the GP regime,(84.3,
while the dotted lines correspond to the Thomas-Fermi square roo
of the parabola in the TG regime, E®.17.

Here we investigate the properties of a trapped gas at
ifferent temperature§ and constant total number of par-
ticles N. Since the overall picture in terms of the density

The intermediate values of(0) are represented by the Profiles and the behaviour of the local pair correlation has

examples 1b and 2b which have density profiles that ar@lready been understood in terms of the diagram of Figs. 3

intermediate between a Gaussian and the inverted parabofd 6, it is now sufficient to only monitor the changes in the
The respective pair correlatiom$?(z,2) also take interme- temperature parametéra_n_d the value_ of the interaction pa-
diate values £g®?(z,2)<2. In the example 2b, however, rametery(0) under conditions whei is kept constant, and

the central part of the density profile is in the GP regime, s¢he€n map these changes into ftey(0)] plane.
that the departures form the coherent level of fluctuations are Thus, for a given system with the couplirgg trap fre-

only seen in the tails of the density profiles. quency ,, and the total number of particlel, our task
consists of calculating the density profila&) at different
2. Low-temperature case temperatured, with the constraint that the total number of

Next, we consider the low-temperature behavior, in whichparticles remains unchanged. Once this is done, we identify
evidence for the Tonks-Girardeau fermionization can occurthe respective values of the dimensionless temperature pa-
Figure 8 represents examples of the density profiles and paiametert and the local value o%(0) and plot these on the
correlations for a gas with lower values of the temperaturét-y(0)] plane of Fig. 3.
parametett: t=6Xx 102 and 6x 10“. The examples shown More specifically, instead of performing this analysis for
correspond to the points 3a—3c and 4a—4c in the diagram @bsolute values of physical parameters, we first identify new
Fig. 6. As we see, fory(0)>1 the gas is in the Tonks- dimensionless variables for the temperature and interaction
Girardeau regime. Comparing this with the earlier high-strength that are more suitable under these conditions. The
temperature examples, we see that for a given density withew parameters we introduce are the global interaction pa-
¥(0)>1, achieving the Tonks-Girardeau regime requiresrametery and the global reduced temperatute

lower temperatured,<1. FI(2h?)\ 12
Here again, the low-densityfarge-(0)] examples of 3c 7= (M) , (6.1)
and 4c have density profiles that are well approximated by NAw,

the thermal Gaussian E@4.4), and are omitted from the
graphs for clarity. However, the pair correlations do not dis- 0=TI/Tq, (6.2
play large thermal fluctuations, but rather are suppressed be-h T =NA
low the coherent levelg®(z,z)<1. This reflects the fact where o= w,. . . -
S . . L The definition of the global interaction parameteiEq.

that the gas is in the regime of high-temperature ferm|on|za-6 D reli . .
. .1 relies on the identity
tion. The example 4c corresponds to the Iowest-temperatur%
parametert, which at constant peak densifpr constant 0 70
v(0)] corresponds to the largest interaction strengttand ? = _yZ(O) =L (6.3
hence the smallest value g?(z,2).

The example 4b is deep enough in the TG regime, and w¥sing the definitions of the local parametef§) and y(0),
see that the density profile is close to the Thomas-Fermive see thafy is the square root of the ratio of two energy
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10° q 10 helps to understand the properties of the gas in terms of

AN ‘/ 1 the variation in the global temperature paramétedote that
0 “ wheny is kept constant, the variations in the temperature
102 | parameter®) andt are essentially equivalent and scalefas

, =%, according to Eq(6.3).

=10y There are simple approximate relations between the glo-

1078 bal and local interaction parametéysand y(0) at high and

» low temperatures. At high temperaturgs> 1) the relation-
107 ship is given by
10;60‘6 16“‘ 16‘2 10° 102\ 10 10° ~ 0 95 1 6.4

=== >1). .
1(0) Y rp ( ) (6.4)

_ FIG. 9. Diagram of the regi_mes of a trapped 1D Bose gas as in At low temperatures(9<1), and in the limiting GP
Fig. 3, except that the curved lin€p—(4) represent the locations of [7(0)<1] and TG[y(0)>1] regimes, the relationship be-

the mt_eracUon_parametey(O) and the redgced te_mperatur,efcir tweeny and y(0) becomes independent éfand is given,
four different (fixed) values of the global interaction parameter .
respectively, by

while the global temperaturé@ is changing. This represents four

different samples with fixed total number of particsnd varying 3 \12
absolute temperatufe For each point on a given line, there exists Y= (7> Y0)¥4 [0<1,90) <1], (6.5
an associated density profile with the peak deni6) correspond- 8\2

ing to the respective value gf(0), and the local values(z) corre- 1
sponding to the values of(z) in the horizontal direction to the Y==9%0), [6<1,%0)>1]. (6.6)
right. The values of the global interaction paramétdor each line m

are(1) 0.002,(2) 0.01,(3) 1, and(4) 10. This implies that the GP and TG regimes can equivalently

scales,ng?/ (242 and To=Nfiw, as in Eq.(6.1) (see also be defined viay or y(0). The GP regime corresponds jo
Ref. [33)). <1 or ¥(0)<1, while the TG regime will correspond @

The definitions of the dimensionless temperature and in> 1 or ¥(0)>1. _
teraction parameteand? both include the total number of ~ From Fig. 10 we see that at high temperatures and con-
particlesN. This is more suitable for analyzing the propertiesStanty, the local interaction parametg(0) varies according
of the gas under conditions of changing temperature at corfo ¥(0) = 6*/2, i.e., linearly in the logarithmic scale of Fig. 10
stantN. In Fig. 9 we present the results of calculation of theand in agreement with Eq6.4). This means that the re-
density profiles for four differentfixed) values of the global sponse of the peak densityf0) to temperature changes at
interaction parametéy while the temperature is changed —constaniN follows the power law ofi(0) = T2 which is an
within a broad range of values, typically between 8.4  expected result for the thermal distribution of a classical
=10. The results are summarized by plotting the path of thédeal gas, Eq(4.4).

resulting local values of the interaction paramegéd) at the As the temperature is reduced, the respons#@f to the
trap center and the reduced temperatyri@ the parameter temperature changes becomes modified, and the modification
space of Fig. 3. is quite different depending on the interaction strerigtRor

For guantitative purposes, we also present the same dateeak interactiongy<1), as the temperatur€ is reduced
in the 6-1/y(0) plane, which is shown in Fig. 10. While Fig. below To=Nfw, (6=1), the peak density(0) first increases
9 identifies the local regimes of the gas with constdnFig.  more rapidly than in a thermal gas, and then the growth is
saturated as the temperature is reduced furtbee curves
(1) and(2) in Fig. 10]. At very low temperatureéf<1), the
peak densityn(0) approaches a constant value independent
of temperature. This is a typical behavior found in a weakly
interacting gas that undergoes quasicondensation and reaches
the GP regime. For intermediate and strong interactigns
=1), on the other hand, the responsen@) to the tempera-
ture reduction is different. Instead of an initial speedup, the
growth of the peak densitg(0) directly goes to the regime
of saturation, once the temperature is reduced below the glo-
bal temperature of quantum degenerdgy[see curves3)
and(4)]. At very low temperatures)(0) again approaches a
constant value independent of the temperature and the gas

FIG. 10. Variation of the peak density0)«1/y(0) as a func-  €nds up in the TG regime.
tion of the temperaturé=T/Nfw, at constant total number of par- From the paths of the curvé8) and(4) in Fig. 9, we see
ticles N. This is the same data as in Fig. 9 except plotted in thethat achieving the TG regime from a high-temperature clas-
1/v(0)-6 plane, whereg=7>2t. sical gas by means of reducing the temperaiuest constant

©
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N requires large values 6§ in the first place. This can be
achieved by having a relatively small total number of par-
ticlesN or a small trap frequencw,, according to Eq(6.1).

VIl. EXPERIMENTAL CONSIDERATIONS

A. Average pair correlation \{=6x1072
. . . . . . : \ L4
While the pair correlatiorg'?(z,2) provides detailed in- 1=6x10

formation about the local correlation properties of a trapped 0 L LT T,

gas, its measurement as a functionzahay not be an easy 10 10 10 10 10" 10 10" 10

task in practice. Here, one usually probes the pair correlation ¥(0)

<\PT(Z)\PT(Z)\P(Z)\P(Z)> within a finite volume, e.g.., via the FIG. 11. The local pair correlation at the trap cerg&(0,0)

m.ea_surement.of the rates of two-body inelastic Processegolid liney and the normalized average pair correlatigf

within the entire sample. This means that one probes th@jashed lingsas a function of the interaction parametg0), for

integrated or averaged correlation properties of the gas, ggur different temperatures For each temperature, the respective

has been demonstrated in a recent experiment of [BEf. lines monitor the values a§®(0,0) andg® as one moves along
We are therefore motivated to study the average pair cotthe lines of constantin Fig. 6.

relation defined via

~ ~ L see, in the limit of small(0) the pair correlation approaches
az=f dZ(‘PT(Z)‘I’T(Z)\I’(Z)‘I’(Z»:fdZ d2(z,2n?(2). the coherent level of fluctuations wit§?(0,00=g@=1,
while at largey(0) it can take any value between zero and 2,
(7. depending on the temperatute
By comparing the full and dashed lines in Fig. 11, we see
at the normalized average pair correlatgf can indeed
be well approximated by the local pair correlation in the trap
centerg®(0,0). This is an important result and may have
useful applications in practice. For example, it gives a direct
justification of the analysis performed in R¢8] where the
results of the measurements of three-body recombination
Yates in a bulk trapped sample have been compared with
theoretical prediction§16,19 for a uniform gas.

Here, an intersting question arises of whether this averag%
correlation has a simple relationship with the local pair cor-t
relation at the trap centgf?(0,0). The reason to expect this
is the fact thatg'?(z,z) under the integral in Eq(7.1) is
multiplied by n?(z) which vanishes rapidly as one ap-
proaches the tails of the density profile. The functig®
X(z,2) near the trap center, on the other hand, varies slowl
and can be approximated by the value of
g?(0,0). Therefore, we can approximag’'(z,z) under the
integral by a constarg'®(0,0), thus reducing Eq(7.1) to B. Practical example

— Here, we return to the analysis of Sec. V, with reference to
G¥=g?(0,0 | dzrf(2). (7.2 Fig. 6, and complete it by providing the results of calculation
of the total number of particled. More specifically, we give
Thus, the average pair correlati@? can be expressed the results for the dimensionless ralid w,/ T as a function
via the local pair correlatiomy®(0,0) using a simple rela- of the local interaction paramete«0) taken along the hori-
tionship, Eq.(7.2). Note that this also requires an indepen-zontal lines of Fig. 6, i.e., at four differeifixed) values of
dent evaluation of the integral of the squared densitythe temperature parameterThis is shown in Fig. 12. For a
fdz rf(z). Introducing a normalized average pair correlationgiven trap frequencyw, and couplingg, each line corre-

g?, we obtain sponds to monitoring the variation in the total number of
— particlesN as a function of the peak density0), at constant
G"®
@=_—"_ - 4?0 0 (7.3 temperaturer.
g g(0,0. : : : y .
2 Figure 12 can also be viewed as giving the variation of
dzr(2) the interaction parameter at the trap ceni) as a function

of Nfiw,/T, which in turn corresponds to monitoring the

In Fig. 11, we plot the local pair correlation at the trap change in the peak density of the g&$) as the total num-
centerg?(0,0 and the normalized average pair correlationper of particlesN is varied at constant temperatuFe Start-
9@ as a function of the interaction parametg0), for four  ing from the regime of low particle numbefi§fie,/T<1 or
different temperatures. Each line monitors the values of high temperatureg=T/Nfw,> 1), we see that the increase
g'?(0,0 andg®® as one moves along the lines of constant in N results in a linear increase of the peak densily)
in Fig. 6. Here, the sequence of points along the horizontak N. This is an expected result for the thermal density distri-
axis refers to the value o§(0) of the associated density pution of a classical ideal gas, E@.4), and corresponds to
profile n(z), for which we first calculate the pair correlation the linear dependence bFiw,/T on 4(0) as seen in Fig. 12.
9?(z,2) as a function of [which includes the plotted values  As the number of particles is increased further and the
of g?(0,0] and then evaluate the integral in E.1) to  ratio Nfiw,/T goes through the critical regioNfw,/T=1
obtain the average correlatia®?, and hence?? As we (corresponding to temperatures of the order of the global
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=3.83x 108 m). With the 8’Rb scattering length 0&=5.3
nm, givingg=2hw,a=5.62x 103" J/m, and with the value

of y(0)=2.16 that we are aiming at, this set of parameters
results in the peak 1D density af0) =3.35x 10° m™* (and
hencengp=1.82x 10°° m™3). At this stage, we can identify
that the conditions of E¢2.4) for achieving the 1D regime
are satisfied.

Next, the aimed value of=6x 1072, together with the
value ofg found above, gives the required absolute tempera-
ture T=1.22x 10731 J (in energy units, ol =8.84 nK). We
next refer to the results of Fig. 12 and read off the value of
the dimensionless ratidNiw,/T=16.7 (or equivalently ¢

FIG. 12. Variation ofNZw,/T as a function ofy(0), for four =T/ NﬁQZzO.OG), W?'(?h cor.responds' tg(0)=2.16 on the
different values of the temperature parameteFor a given cou- €Spectivet=6x10"* line. Finally, using the values ob,
pling g and a fixedT, this monitors the variation ofhw, as one  andT, we find that the required total number of particles here
moves along the respective horizontal line in Fig. 6. Here, eachts N=153.
point along the horizontal line is being referred to the value/(@h We note that all of the above parameter values are close to
of the associated density profile, for which we first calculate thethe conditions realized in recent experimef#s5].
densityn(z) as a function oz and then evaluate the resulting total
number of particlesN=[n(z)dz to form the dimensionless ratio
NAw,/T. VIIl. SUMMARY

3

10710 102107 10° 10" 10° 10
Y(0)

temperature of quantum degenera€ys Ty) the growth of In summary, we have obtained predictions for the corre-
the peak density(0) speeds up, for the lines corresponding lations and density profiles of a one-dimensional trapped
to t=5x 10* and 16. This speedup is most prominent in the Bose gas at finite temperature. This allows previous results
first case corresponding to very weak interactions, and refor the uniform 1D Bose gas to be applied to the experimen-
flects the fact that the gas undergoes quasicondensate formaily relevant case of a harmonic trap. The calculations use a
tion where the added particles mostly go into the trap centelocal density approximation which is asymptotically correct
rather than into the tails of the density distribution. With in the limit of a large trap with a sufficiently slowly varying
further increase oNfiw,/T, the growth of the peak density trap potential. We find that, in this limit, there is a similar
n(0) is slower than in the classical gas case and the situatiopjassification of different coherence regimes as in the uni-
is now reversed: the added particles mostly go into the tailsgrm case.
Here, the gas is deep in the GP regime and the density dis- Remarkably, the density variation across the trap does not
tribution is given by the mvezrted parabolfl HG.14. cause a dramatic change in the average correlation function
For the cases of=6x 10" and 610", which at con-  omnared to the value at the trap center. This is because the

stantT correspond to stronger interparticle interactions, thecorrelations are found to be relatively uniform in the high

change in the slope of the respective curves in Fig. 12 aroun&lensity region near the trap center, which dominates any

Nfiw,/T=1 represents the fact that the growth of the peal&rap—averaging measurement. This is particularly useful for

densityn(0) only slows down when the number of particles . : )
o o ;  Sxperiments that measure correlation functions through aver-
is increased past this critical region. Here, the gas goes firs

through the TG regime where the density profile is given byagl'ng a nonlmear Interaction over the length of the trap,
the square root of the inverted parabola, E8.18, and which is the S|mples_t currently available procedure.
eventually it enters the GP regintsee Fig. 6 with gradual We expect that direct measurementsg that can test

transformation of the shape of the density profile to the GFIhe predi_ctions of this fgndgmentally important many-body
parabola. theory will become feasible in the near future.

Apart from providing additional information about the
properties of trapped gases, Fig. 12 can also serve for quan-
titative analysis relevant to practice. As an example, we con-
sider a gas of 'Rb atoms(m=1.43x 102°kg,a=5.3 nm K.K. and P.D. acknowledge the Australian Research
with the aim of identifying a set of physical parameters thatCouncil for the support of this work. D.G. and G.S. acknowl-
correspond to the conditions of the point 3b in Fig. 6. Hereedge support from the Ministére de la Rechercfeant
¥(0)=2.16 andt=6x 1072, which is an example of a mod- No. ACI Nanoscience 201 from Centre National de la
erately fermionized gas. The pair correlatigi'(z,2) is be-  Recherche ScientifiqueCNRS, and from the Nederlandse
low the coherent levey®(z,2) <1, yet the gas is not in the Stichting voor Fundamenteel Onderzoek der Mat&fi@M).
extreme low-temperature TG regime and therefore the denfhe research was also supported in part by the National
sity profile cannot be approximated by the square root of &cience Foundation under Grant No. PHY99-07949. Labora-
parabola. In this sense, this example would be easier to redieire Kastler Brossel is a research utiiyMR 8552 of
ize in practice than the extreme TG regime. Université Pierre et Marie Curie and ENS, associated with

We first consider the trapping potential with,/27  CNRS. LPTMS is a research uriiyMR 8626 of CNRS and
=20 Hz and w,/27=80 kHz (1,=2.42x10°m and |,  Université Paris Sud.
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