5,127 research outputs found

    Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish-metazoan parasite model?

    Get PDF
    Since its use as a model to study metazoan parasite culture and in vitro development, the plerocercoid of the tapeworm, Ligula intestinalis, has served as a useful scientific tool to study a range of biological factors, particularly within its fish intermediate host. From the extensive long-term ecological studies on the interactions between the parasite and cyprinid hosts, to the recent advances made using molecular technology on parasite diversity and speciation, studies on the parasite have, over the last 60 years, led to significant advances in knowledge on host-parasite interactions. The parasite has served as a useful model to study pollution, immunology and parasite ecology and genetics, as well has being the archetypal endocrine disruptor

    Average Continuous Control of Piecewise Deterministic Markov Processes

    Full text link
    This paper deals with the long run average continuous control problem of piecewise deterministic Markov processes (PDMP's) taking values in a general Borel space and with compact action space depending on the state variable. The control variable acts on the jump rate and transition measure of the PDMP, and the running and boundary costs are assumed to be positive but not necessarily bounded. Our first main result is to obtain an optimality equation for the long run average cost in terms of a discrete-time optimality equation related to the embedded Markov chain given by the post-jump location of the PDMP. Our second main result guarantees the existence of a feedback measurable selector for the discrete-time optimality equation by establishing a connection between this equation and an integro-differential equation. Our final main result is to obtain some sufficient conditions for the existence of a solution for a discrete-time optimality inequality and an ordinary optimal feedback control for the long run average cost using the so-called vanishing discount approach.Comment: 34 page

    Quantum ballistic experiment on antihydrogen fall

    Full text link
    We study an interferometric approach to measure gravitational mass of antihydrogen. The method consists of preparing a coherent superposition of antihydrogen quantum state localized near a material surface in the gravitational field of the Earth, and then observing the time distribution of annihilation events followed after the free fall of an initially prepared superposition from a given height to the detector plate. We show that a corresponding time distribution is related to the momentum distribution in the initial state that allows its precise measurement. This approach is combined with a method of production of a coherent superposition of gravitational states by inducing a resonant transition using oscillating gradient magnetic field. We estimate an accuracy of measuring the gravitational mass of antihydrogen atom which could be deduced from such a measurement.Comment: arXiv admin note: text overlap with arXiv:1403.478

    Quantum reflection of antihydrogen from nanoporous media

    Full text link
    We study quantum reflection of antihydrogen atoms from nanoporous media due to the Casimir-Polder (CP) potential. Using a simple effective medium model, we show a dramatic increase of the probability of quantum reflection of antihydrogen atoms if the porosity of the medium increases. We discuss the limiting case of reflections at small energies, which have interesting applications for trapping and guiding antihydrogen using material walls

    Quantum reflection of antihydrogen from Casimir potential above matter slabs

    Full text link
    We study quantum reflection of antihydrogen atoms from matter slabs due to the van der Waals/Casimir-Polder (vdW/CP) potential. By taking into account the specificities of antihydrogen and the optical properties and width of the slabs we calculate realistic estimates for the potential and quantum reflection amplitudes. Next we discuss the paradoxical result of larger reflection coefficients estimated for weaker potentials in terms of the Schwarzian derivative. We analyze the limiting case of reflections at small energies, which are characterized by a scattering length and have interesting applications for trapping and guiding antihydrogen using material walls

    A spectroscopy approach to measure the gravitational mass of antihydrogen

    Full text link
    We study a method to induce resonant transitions between antihydrogen (Hˉ\bar{H}) quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the Hˉ\bar{H} atom could be deduced from such a measurement. We also demonstrate that a method of induced transitions could be combined with a free-fall-time measurement in order to further improve the precision

    Self-consistency in the Projected Shell Model

    Full text link
    The Projected Shell Model is a shell model theory built up over a deformed BCS mean field. Ground state and excited bands in even-even nuclei are obtained through diagonalization of a pairing plus quadrupole Hamiltonian in an angular momentum projected 0-, 2-, and 4-quasiparticle basis. The residual quadrupole-quadrupole interaction strength is fixed self-consistently with the deformed mean field and the pairing constants are the same used in constructing the quasiparticle basis. Taking 160Dy^{160}Dy as an example, we calculate low-lying states and compare them with experimental data. We exhibit the effect of changing the residual interaction strengths on the spectra. It is clearly seen that there are many JĎ€=0+,1+,4+J^\pi = 0^+, 1^+, 4^+ bandheads whose energies can only be reproduced using the self-consistent strengths. It is thus concluded that the Projected Shell Model is a model essentially with no free parameters.Comment: 13 pages, 10 figures, submitted to Nuclear Physics
    • …
    corecore