4 research outputs found

    Two-dimensional Anderson-Hubbard model in DMFT+Sigma approximation

    Full text link
    Density of states, dynamic (optical) conductivity and phase diagram of paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean-field theory (DMFT+Sigma approximation). Strong correlations are accounted by DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular "bare" density of states (DOS). The DMFT effective single impurity problem is solved by numerical renormalization group (NRG). Phases of "correlated metal", Mott insulator and correlated Anderson insulator are identified from the evolution of density of states, optical conductivity and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of the finite size, allowing us to construct the complete zero-temperature phase diagram of paramagnetic Anderson-Hubbard model. Localization length in our approximation is practically independent of the strength of Hubbard correlations. However, the divergence of localization length in finite size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.Comment: 10 pages, 10 figures, improve phase diagra

    Melting transition of an Ising glass driven by a magnetic field

    Get PDF
    The quantum critical behavior of the Ising glass in a magnetic field is investigated. We focus on the spin-glass-to-paramagnet transition of the transverse degrees of freedom in the presence of a finite longitudinal field. We use two complementary techniques, the Landau theory close to the T = 0 transition and the exact diagonalization method for finite systems. This allows us to estimate the size of the critical region and characterize various crossover regimes. An unexpectedly small energy scale on the disordered side of the critical line is found, and its possible relevance to experiments on metallic glasses is briefly discussed. © 2004 The American Physical Society.Fil: Arrachea, Liliana del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dalidovich, D.. National High Magnetic Field Laboratory; Estados UnidosFil: Dobrosavljevi?, V.. National High Magnetic Field Laboratory; Estados UnidosFil: Rozenberg, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Extended Hubbard Model: Charge ordering and Wigner-Mott transition

    Get PDF
    Strong correlations effects, which are often associated to the approach to a Mott insulating state, in some cases may be observed even far from half filling. This typically happens whenever the intersite Coulomb repulsion induces a tendency toward charge ordering, an effect that confines the electrons, and in turn favors local moment formation, i.e., Mott localization. A distinct intermediate regime then emerges as a precursor of such a Wigner-Mott transition, which is characterized by both charge and spin correlations, displaying large mass enhancements and strong renormalizations of other Fermi-liquid parameters. Here we present a careful study of a quarter-filled extended Hubbard model\u2014a simple example where such physics can be studied in detail, and discuss its relevance for the understanding of the phenomenology of low-density two-dimensional electron gases
    corecore