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Melting transition of an Ising glass driven by a magnetic field
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The quantum critical behavior of the Ising glass in a magnetic field is investigated. We focus on the
spin-glass-to-paramagnet transition of the transverse degrees of freedom in the presence of a finite longitudinal
field. We use two complementary techniques, the Landau theory close to theT50 transition and the exact
diagonalization method for finite systems. This allows us to estimate the size of the critical region and
characterize various crossover regimes. An unexpectedly small energy scale on the disordered side of the
critical line is found, and its possible relevance to experiments on metallic glasses is briefly discussed.
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I. INTRODUCTION

Understanding disordered systems is one of the m
challenges of condensed matter physics, since the pres
of disorder is always unavoidable in experiments. When d
order is strong it can dominate the physics and lead to ex
states of matter such as the glassy phases.1 The most salient
properties observed in glassy systems are the slow dynam
relaxation and history dependence of thermodynamics.
search on quantum spin systems is of primary importa
because of potential technological applications. Current w
in quantum computing and spintronics, where the und
standing of relaxation processes is crucial,2,3 is boosting a
renewed interest in basic models of disordered quan
magnets.

The goal of the present work is to consider the rand
Ising model that displays a quantum paramagnet to spin g
transition driven by fluctuations introduced by an exter
magnetic field. We tackle the problem by utilizing two di
ferent theoretical approaches. We solve the model using
recently introduced technique of exact diagonalization t
includes the averaging over an ensemble of disorder rea
tions in a finite system. The relevant results are then obta
by extrapolation of the data to the thermodynamic limit4,5

This method allows for a direct investigation of theT50
behavior in the whole range of parameters, circumvent
thus, the usual technical difficulties encountered in the r
lica formalism. On the other hand, to investigate in detail
critical behavior,6 we formulate the Landau theory in th
vicinity of the quantum phase transition.7,8 The consistency
check of results obtained using those two approaches al
us not only to confirm their reliability, but also to identify a
unexpectedly narrow subregime near the phase boundar
which the rapid onset of the glassy ordering occurs. We
cuss the significance of our findings for the current exp
ments on metallic glasses.9

We consider the random Ising model that is placed i
magnetic field and that has both the transverse and long
dinal components,

H52(̂
i j &

Ji j Si
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The random interactionsJi j are chosen to be infinite rang
and Gaussian distributed with varianceJ, that sets the unit of
energy in the model, whileh5(hT,0,hL). This model has an
experimental realization in the LiY12xHoxF4 compound that
has been the subject of recent experiments.10,11 In this insu-
lating compound, the ground state of the magnetically ac
Ho ions is the low-energy Ising doublet. In addition to th
the long-range nature of dipolar interactions between
spins enables us to perform the treatment in the large c
dination limit. Disorder in the system arises from the fa
that the substitutions of the Y atoms by the Ho ions a
positionally random. The strong randomness leads to
clear observation of the spin- and ferroglass phases at
concentrationx.12

To investigate the transition in the system described
the Hamiltonian~1!, we employ two methods that comple
ment each other in their scope and range of applicability. T
main theoretical tool we use to obtain the detailed analy
behavior is based on the Landau theory approach.7,8 Though
attractive, this method is rigorously valid only close to t
quantum critical point, so that the actual range of applica
ity of this approach is always difficult to assess. Hence,
addition, we also use the exact diagonalization scheme
which one has to obtain the solution ofH for a number of
explicit realizations of disorder~typically several tens of
thousands!. The procedure is implemented on finite syste
of up to 17 spins. The physical observables, such as gap
spectral functions, are obtained along the lines of Ref. 5
this approach, noa priori assumptions are made, and i
validity is limited by the reliability of the required extrapo
lations to the large size limit. The main reason for succes
the previous applications of the method is that for high co
nectivity models the numerical extrapolation to the therm
dynamic limit is rather well behaved. Nevertheless, as
shall see and discuss later on, in the present study we fi
certain range of parameters,where the previous statem
does not hold. Remarkably, this circumstance allows us
gain new insight into the problem.

The work is organized as follows. Sec. II is devoted to t
explanation of the technical procedure. Results are prese
in Sec. III, and Sec. IV contains the summary of the ma
results and discussion.
©2004 The American Physical Society19-1
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II. TECHNICAL REMARKS

It is useful to characterize the parameter space byhL and
hT, the longitudinal and transverse components of exte
magnetic fieldh, respectively. The pure transverse field ca
was the subject of previous investigations.4 At T50, the
existence of the quantum phase transition was establishe
a value ofhT;O(J). At this point the spin-spin dynamica
local susceptibility becomes gapless.13,14 When the longitu-
dinal field is turned on, the net longitudinal magnetization
immediately generated and the critical point extends int
quantum critical linehc

T(hc
L). This line separates the tw

phases, in which the transverse degrees of freedom of s
are either disordered~largehT andhL) or spin-glass ordered
~small hT and hL). As we shall show, the excitation ga
closes at this critical line, becoming very small in som
crossover region on the disordered side of the line.

A. Landau theory

The Landau functional is constructed using the cumul
expansion about the quantum critical point at zero longitu
nal field. Both the term with random interactions and the p
with longitudinal field in the Hamiltonian~1! are treated as
perturbations. This procedure implies that the longitudi
magnetic fieldhL is small compared to the primary micro
scopic energy scalehT;J. The derivation is straightforward
and leads to the following Ginzburg-Landau action7

bF5 (
a,vn

S r 1vn
2

k DQaa~vn!1
u

2b (
a

F(
vn

Qaa~vn!G2

2
k

3 (
abc

(
vn

Qab~vn!Qbc~vn!Qca~vn!

2
b~hL!2

2
Qab~vn50!2

by

6 E E dt1dt2

3(
ab

@Qab~t12t2!#4. ~2!

Herer, being some regular function ofhT/J, is the parameter
that governs the transition in the absence of the longitud
field hL, while u and y are taken at the critical poin
(hT/J)c;O(1). It is important to retain the quartic term
responsible for the replica symmetry breaking~RSB!
instability.8 We must insert then the mean-field ansatz

kQab~vn!5H D~vn!1bqEAdvn,0 a5b

bqabdvn,0 aÞb,

into Eq. ~2! and vary subsequently the free energy with
spect toD(vn), qEA , andqab . The parametrization ofqab
depends, however, on the phase under consideration. In
disordered paramagnetic phase~PM! we must use the
replica-symmetric ansatzqab5qEA , while in the spin-glass
phase~SG! the solution with a broken symmetry should b
used.8,15 The variational procedure is lengthy albeit identic
to that performed in the previous works. As a result,
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obtain that the equation determiningD(vn) is the same in
both PM and SG phases, and reads

r 1vn
21uF 1

b (
vn

D~vn!1qEAG2D2~vn!2
2y

k2
qEA

2 D~2vn!

2
2y

k2

qEA

b (
v1

D~v1!D~2v12vn!

2
2y

3k2

1

b2 (
v1 ,v2

D~v1!D~v2!D~2v12v22vn!50.

~3!

This equation must be supplemented by

2D~0!qEA1
2y

3k2
qEA

3 1
k~hL!2

2
50 ~4!

in the PM phase and

qEA
2 52@D~0!k2#/y ~5!

in the SG phase, to comprise the full system to be sol
self-consistently. Though the exact treatment of this sys
is not possible, we can obtain the leading order of the cor
solution close to the quantum critical point. We consider h
only the case ofT50, so that all the sums over Matsuba
frequencies are substituted by the corresponding integra

We note first that, ify50, the complete solution is easil
derived to be7 D(vn)52Avn

21D2. The gapD2, that turns
to zero right at the critical point, is determined using t
following identity:

E dv

2p
~v21D2!1/25

Lv
2

2p
1

D2

2p
ln~c1Lv /D!. ~6!

In Eq. ~6! Lv is the upper frequency cutoff andc1 is some
constant of order unity. Let us assume that foryÞ0 the
leading approximation ofD(vn) contains the same square
root singularity as fory50, and analyze how the last tw
terms in Eq.~3! affect the solution in the leading approxima
tion. Simple inspection reveals that in the prelast term it
sufficient to putvn50, D50 while calculating the integra
over v1. This contributes only to the renormalization of th
coefficientu beforeqEA , so thatuqEA→u1qEA .

The last term requires, however, the calculation of
integral

K~D,vn!5E dv1

2p E dv2

2p
Av1

21D2Av2
21D2

3A~v11v21vn!21D2 ~7!

that is difficult to perform exactly for arbitraryvn and D2.
We need, however, only the leading behavior of this integ
providedvn ,D!1. A simple estimate yields

K~D,vn!5A1Bvn
21C1D2 ln~C2 /D!, ~8!
9-2
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where the constantsA, B, C1, andC2 are some cutoffLv

dependent functions. We see that the first term in the ab
expression renormalizes the critical valuer c ~equal to
uLv

2 /2p for y50), while the contribution from the secon
one can be simply absorbed by the appropriate rescalin
temperatureT in vn

2 . The third term in Eq.~8! leads to the
renormalization of the coefficient before theD-dependent
part of Eq.~6!.

Similarly as in Ref. 8, we obtain that in the PM phase

D~vn!52yqEA
2 /k22Avn

21D2,

D25
r 2r c1u1qEA

u2 ln@Cu2 /~r 2r c1u1qEA!#
, ~9!

whereC, u1, andu2 are again someLv dependent functions
of the order unity.

B. Numerical diagonalization

The general strategy is to take samples from the rand
ensemble of systems of sizeN and exactly diagonalize th
ensuing Hamiltonians~1!. The different physical quantitie
are computed for each realization and then averaged ove
number of samples. Finite size effects are analyzed and
sults are extrapolated to the thermodynamic limit (N→`).
Typically, systems with up toN517 spins can be dealt with
Averages are performed over several thousands to hund
of thousands of disorder realizations. A typical run dema
up to a week for the larger systems on an eight-node par
cluster. The ground state and the dynamical correlation fu
tions atT50 are calculated by the Lanczos method.16

The local spin susceptibility is obtained from

x loc
zz ~v!5

1

M (
m51

M
1

N (
i 51

N F ^F0
(m)uSi

z 1

v2H (m)
Si

zuF0
(m)&G ,

~10!

whereM is the number of realizations of disorder anduF0
(m)&

denotes the ground state for theJi j set corresponding to th
mth realization. Although we deal with systems having
finite number of poles for each realization, the average o
disorder naturally produces smooth response functions w
out the need of introducing an artificial broadening as
usual exact diagonalization methods. In some cases,
found that it is useful to use a logarithmic discretization
thev axis to obtain accurate results due to the large num
of poles occurring at low frequencies.

Two criteria can be used to obtain the boundary of
quantum transition from the paramagnetic to the spin-g
phase.

~i! The onset for spin-glass order is naturally signaled
the divergence of the spin-glass susceptibilityxSG, which is
related to the local-spin susceptibility by1

xSG5
^@x loc

zz #2&

12J2^@x loc
zz #2&

, ~11!
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where ^@x loc
zz #2& denotes the site and realization average

the quantity between square brackets atv50 in Eq. ~10!.
Thus, the condition

J2^@x loc
zz #2&51 ~12!

indicates the instability of the system toward a spin-gla
state.

In previous papers4,17 the accuracy of the method wa
demonstrated by reproducing several known results for
infinite-range Ising model with random exchange intera
tions and transverse magnetic fieldhT14 ~i.e., the present
model with hL50). In particular, an accurate estimate f
the critical value of the transverse fieldhc

T , at which the
quantum transition between the spin-glass and the param
netic phases takes place, was obtained.

~ii ! A second criterion that signals the instability toward
spin-glass phase is the closing of the gap of the dynam
susceptibility. This criterion is called themarginality condi-
tion or replicon criterionand has already been discussed
the context of related models.15,18

Under the reasonable assumption of a clean gap in
paramagnetic phase and a lower-frequency edge of the s
tral functionx9(v)522 Im@x loc

zz (v)# that grows faster than
quadratic, it is easy to see that the closing of the gap imp
a divergence in the third inverse moment ofx9(v).

Thus, we establish the closing of the gap by comput
the quantity

m(23)5E
0

`dv

2p

x9~v!

v3
~13!

at given values ofhL and system sizeN, and then looking for
the vanishing of the extrapolations of@1/m(23)# to the limit
of large system.19 The procedure is illustrated in Fig. 1. Th
estimate of@1/m(23)# in the thermodynamic limit is obtained

FIG. 1. Inverse of the third inverse moment as a function ofhT.
The intercept of the dashed line with the horizontal axis gives
estimate of the criticalhc

T . The inset shows the same quantity as
function of the inverse of the system size forhT50.75,0.8,0.9,1.
The dotted lines indicate the linear fits for the extrapolation of t
quantity to the thermodynamic limit.
9-3
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by recourse to linear fits as indicated in the inset of t
figure. The accuracy of this alternative method was tested
the casehL50 where good estimates ofhc

T are available. By
a linear fit of the points closer tohc

T ~cf. Fig. 1!, we obtained
hc

T50.7260.01, which is in agreement with previously r
ported values.4,13,14

Finally, we also computed the dependence of the gap
the transverse field. Numerically, the calculation of the s
of the gap is more challenging than the calculation of in
grated quantities such asx loc

zz . The origin of the difficulties
is that for any given realization ofJi j , poles inx9(v) may
appear at frequencies substantially smaller than the ac
value of the gap but with a very small weight. Averaged ov
disorder, these poles will contribute with no significant s
tistical weight to the line shape ofx9(v). However, a naive
determination of the value of the gap through the criterion
the average position of the lowest-frequency pole, wo
lead to a substantial underestimate of the position of the g
since no information on the spectral weight is used. The
fore, we need a more accurate method for the determina
of the gap. We used the following procedure. First, we ge
accurate estimate of the critical transverse fieldhc

T(hL).
Then, at any given system size andhL, we obtain the dy-
namical response for various values ofhT.hc

T . We then
rigidly shift the spectra down in frequency until we get t
collapse of the low-frequency edges. As illustrated in Fig
there is a very weak dependence of the shape of the e
with hT, that makes this procedure sound. Then, simply fr
the energy shift we get estimates of the gap at the givenhL

and system sizeN. Finally, aN→` extrapolation of the gaps
is made assuming a simple linear in 1/N behavior,14 as
shown in Fig. 3.

III. RESULTS

As a result of solution of Eqs.~3! and~4!, one can distin-
guish the following regimes on a (hT,hL) plane~see Fig. 4!.

FIG. 2. Spectral functionx loc9 (v) for N512, hL50, andhT

50.71,0.72,0.73,0.74,0.75,0.8,0.9,1,1.5. Data forhTÞ0.71 were
rigidly shifted down in frequency along thev axis in order to
overlay all the low-frequency edges. The shifts provide the e
mates for the magnitude of the gapD(hT2hc

T) for the given system
size.
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~A! In this regime, in whichhL!(r 2r c)
3/4, qEA is the

smallest parameter and can be treated as a perturbation.
result, we obtain with the logarithmic accuracy, thatqEA
5„k(hL)2

…/4D, D'$(r 2r c)/u2 ln(1/(r 2r c)%
1/2. This equa-

tion shows that whenhL becomes nonzero,qEA also becomes
finite even in the PM phase due to the finite magnetizat
along the longitudinal axis.

The expression for the gap was first obtained in Refs.
and 20 that considered thehL50 case. To answer the que
tion of the region of validity of the Landau approach, we u
the exact diagonalization method to obtain the gap as a fu
tion of hT at hL50. The results are shown in Fig. 5. Th
agreement at small values ofD demonstrates the reliability
of our methods and gives an indication of the size of
critical region.

~B! This region is characterized by the conditionur
2r cu3/4!hL. In the leading approximation D

i-

FIG. 3. The estimates ofD(hT2hc
T) at hL50 and hT

50.72,0.73,0.74,0.75,0.8,0.9~bottom to top! for different system
sizes,N58,12,16. The dotted lines indicate the linear fits for t
extrapolation of the gap to the thermodynamic limit. The good qu
ity of the linear fit does not require the use of intermediate sys
sizes.

FIG. 4. Schematic phase diagram predicted by the Lan
theory. The dashed lines denote crossovers while the full line
critical line.
9-4
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'$„u1k(hL)2
…/4u2 ln„1/(hL)4/3

…%1/3, while qEA

'$„k(hL)2/4…A(u2 /u1)ln„1/(hL)4/3
…%2/3.

~C! This regime, in which (r c2r )3/4@hL, is the closest to
theT50 critical boundary. The Edwards-Anderson~EA! or-
der parameter, that crosses over to its value in the gla
phase, is given byqEA5@(r c2r )/u1#1(u2D2/u1)ln@1/D2#,
with D'@ku1(hL)2/4(r c2r )#2@2y(r c2r )2/3u1

2k2#. From
this expression it is easily seen thatD vanishes at the critica
line given by

hL5~8y/3!@~r c2r !/u1k#3/2. ~14!

Since r is a regular function ofhT/J, so that (r c2r )}(hc
T

2hT), we see that the gap vanishes at the line that is in
determined byhc

L}(hc
T2hT)3/2.

Finally, in the SG phase

D~vn!52yqEA
2 /k22uvnu, qEA5~r c2r !/u1 , ~15!

resulting in a gapless form of the spectral densityx9(v)
}v.

We would like now to discuss the nature of the crosso
between subregimes~B! and ~C! in more detail. A rather
surprising result, one obtains from the exact diagonaliza
method, is that in fact the freezing transition of the transve
degrees of freedom takes place at the critical boundary
given byhcED

L }(hc
T2hT)3/4 ~see Fig. 6!. This result was veri-

fied by the two different criteria discussed in Sec. II
namely, the divergence of the spin-glass susceptibility gi
by J2^@x loc

zz #2&51, and the vanishing of the excitation e
ergy gap of the regular part of the dynamical spin susce
bility. It is notable that the extrapolations to the thermod
namic limit for these two different freezing transition criter
do agree well. However, these results seem paradoxical s
the Landau theory~14! predicts a phase transition bounda
with a different functional form, namely,hc

L}(hc
T2hT)3/2

~and different curvature, see Fig. 4!.
At this stage we are faced with two possibilities to sol

this paradox.~i! The Landau theory fails to properly describ
the correct boundaries between the different phases of
model. ~ii ! The numerical results suffer from severe finit

FIG. 5. Gap vs transverse fieldhT at hL50 ~open circles!. The
fitting function from Eq.~9! with qEA50 is plotted in the solid line.
The arrow indicates the critical field.
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size effects. We analyze below each of these possibilit
trying to understand their origins and their physical implic
tions.

The Landau theory has been successful to describe
critical behavior of the model withhL50. The independen
methods, such as one-loop expansion,13 the exact solution of
a related rotor model20 as well as numerical methods, simila
to the ones considered in the present work,4 lead to the same
picture. In addition, no doubts seem to rise upon its valid
to describe the critical region of the model withhT50, the
classical Sherrington-Kirkpatrik~SK! model in a longitudi-
nal field at finite temperatureT. In the latter case, Landa
theory predicts the so-called de Almeida Thouless~AT! line,
dividing the paramagnetic phase from the ordered onehc

L

}(Tc2T)3/2, beingTc the critical temperature.1 On the other
hand, athL50 the numerical method shows no problem a
is consistent with the Landau theory~cf. Fig. 5 and Ref. 4!.
So, as a further test of the finite-size effects in the numer
method, we decided to investigate the behavior along a
ferent axis, namely, the temperature axis that allows for
ditional comparison to the Landau theory in the (hL,T)
plane. Thus, we evaluatedJ2^@x loc

zz #2& for the SK model as a
function of T for systems of the same size as those used
the quantum case, and performed the extrapolations to
thermodynamic limit with the same criteria. Details of th
numerical procedure to obtain the behavior of the lat
quantity in the thermodynamic limit are shown in Fig. 7. A
a givenhL the critical temperature then is determined fro
the conditionJ2^@x loc

zz #2&51. The resulting critical line is
shown in Fig. 8. Interestingly, we found similar discrepa
cies as before, since numerical calculations suggest tha
critical temperature ishc

L}(Tc2T)3/4, instead of the correc
result with a critical exponent 3/2. This fact led us to susp
that the numerical procedure fails to capture the corr
boundary at finitehL . Furthermore, very large finite-size e
fects have been recently reported also in the class
model.21 Note that in the latter work, special methods va
only for the classical model allow for the numerical solutio
of systems much larger than the ones considered here.
spite the large sizes of the samples, the correct transition

FIG. 6. SG-PM phase boundary obtained with exact diagon
ization. Filled and open circles correspond to the two different c
teria ~i! and ~ii !, respectively~see text!. The solid line corresponds
to the fitting functionhT5hc

T22.2(hL)4/3.
9-5



he
va
th
ite

re
to
ld

ll

c
rm

ha

sics
ct-

-
s to
ent
ry
pos-
this
rved
as
ne
ctly
tor
l-

ti-
els
s a
est

ate
ence
ap

aller

p

n-
tor

n-
res

ur-
ical
e at

h
in
it is

al
can
and
oss-
n
the
the

eld

r

,

s in

e
th
o

L. ARRACHEA et al. PHYSICAL REVIEW B 69, 064419 ~2004!
is still not properly captured. Thus, it seems that within t
present state of the art of numerical methods and the a
able computing power there is no hope to overcome
problem of the finite-size effects near the critical line at fin
longitudinal field.

In light of these results let us further scrutinize the p
dictions of the Landau theory. In particular, it is important
note that, in the presence of the nonzero longitudinal fie
the critical behavior of the gap is different than athL50. It
takes a much slower, linear formD(dr );dr (dr is the dis-
tance to the critical line!, becoming the new effective sma
energy scale that characterizes the region~C!. This linear
regime ofD(dr ) crosses over to the regime~B!, at values of

r c2r'@ku1~hL!2/4#2/3u2
1/3 ln1/3@1/~hL!4/3#, ~16!

renderinghL}(hc
T2hT)3/4 up to an inessential logarithmi

prefactor. Remarkably, this is precisely the functional fo
obtained for the critical line~and gap closure! from the nu-
merical calculation. Therefore, we are led to conclude t

FIG. 7. ^@x loc
zz #2& for the SK model athL50.05 and T

50.23,0.26,0.29,0.32,0.35,0.38,0.41 as a function of the invers
the system size. The linear fits to perform the extrapolations to
thermodynamic limit are indicated in dashed lines. The quality
the fits is similar for allhL andT.

FIG. 8. Tc as a function of the longitudinal fieldhL in the SK
model. The fitting function isTc5Tc(hL50)20.7hL

4/3.
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for systems of the size that one can diagonalize, the phy
of the small gap is masked by the finite-size effects, affe
ing, thus, the validity of extrapolations.

This kind of effects is well known in the context of one
dimensional models. The latter are excellent laboratorie
test the reliability of numerical methods since independ
results by conformal field theory and Luttinger liquid theo
are available. In some cases, even the exact solution is
sible by recourse to the Bethe Ansatz technique. For
reason, let us make a brief review of some features obse
in the one-dimensional Hubbard model, which might help
a reference and illustration of a similar situation as the o
we have described above. The Hubbard model is exa
solvable with Bethe Ansatz and is known to be an insula
at half-filling for all positive values of the Coulomb repu
sion U. A detailed study of the exact solution22 reveals that
the charge gap is exponentially small for smallU, while it
grows linearly withU when this parameter overcomes a cri
cal value. A finite system is characterized by discrete lev
separated by finite-energy gaps. In particular, there i
finite-energy gap between the ground state and the low
charge excitation, which is the relevant excitation to evalu
the charge gap. The charge gap is related to the coher
length for the charge propagation. Extrapolations of the g
based on data corresponding to systems with lengths sm
than the coherence length~which can be very large within
the smallU regime! lead to the prediction of a vanishing ga
in the thermodynamic limit, thus concluding~incorrectly!
that the system is metallic. Similar difficulties are encou
tered in extended Hubbard models with a metal-insula
transition.23

More interesting are the implications of such a small e
ergy scale. In case of the Hubbard model, slight departu
from the ideal situation of perfect nesting of the Fermi s
face due to disorder, additional interactions or geometr
frustration, result in the occurrence of a true metallic phas
half-filling within the smallU region. At the same time, the
insulating phase at largerU is more robust and survives suc
perturbations. In the Ising model with two fields studied
this work, an analogous behavior can be expected, and
likely that the small gap within the region~C! may be also
difficult to observe in experiments as well as in numeric
calculations. In the classical case, the numerical results
be an indication that the free energies of the ordered
paramagnetic phases are actually very close within a cr
over region in the (hL,T) diagram, equivalent to the regio
~C! of Fig. 4. This may be also a possible explanation to
anomalous behavior observed in experimental studies of
AT line.24 In contrast, in regions~A! and ~B!, the r depen-
dence of the gap assumes a form similar to the zero-fi
limit @see Eq.~9!, except that the variabler is shifted by the
quantity u1qEA]. Since in region~B! ~dropping logarithmic
corrections! qEA;(hL)4/3, we conclude that the crossove
line separating regions~B! and ~C! may play a role of an
apparentcritical line, below which the gap, although finite
may assume unobservable small values.

IV. SUMMARY AND CONCLUSIONS

We have investigated theT50 phase diagram of the fully
connected Ising model with random exchange interaction

of
e
f
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MELTING TRANSITION OF AN ISING GLASS DRIVEN . . . PHYSICAL REVIEW B69, 064419 ~2004!
the presence of longitudinal and transverse magnetic fie
We have used the complementary techniques: the Lan
theory and exact diagonalization to determine the ph
boundaries in the plane (hL,hT), as well as the behavior o
the spin gap close to the transition. We found that while b
methods fully agree for vanishing small longitudinal fields
different critical boundary is predicted at finitehL. We have
also employed the same methods to determine the
Almeida-Thouless transition line in the classic
~Sherrington-Kirpatrik! model as a function of temperatur
finding the same kind of discrepancy. Since the Land
theory predicts in this case the expected correct behavior
conclude that the numerical results are likely to be affec
by finite-size effects. A careful analysis of the behavior of t
gap given by the Landau theory, points towards the poss
ity that the transition line observed by the numerical meth
is actually a crossover line at which the gap changes its
havior as a function of the transverse field, assuming v
small values.

This outstanding feature, which was overlooked in pre
ous works, may have important consequences. For insta
it may be responsible for the peculiar observation of
quenching of the nonlinear susceptibility at the quant
critical point of the LiY12xHoxF4 series.25 Another example
is the electron glass model that was recently describe
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