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Melting transition of an Ising glass driven by a magnetic field
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The quantum critical behavior of the Ising glass in a magnetic field is investigated. We focus on the
spin-glass-to-paramagnet transition of the transverse degrees of freedom in the presence of a finite longitudinal
field. We use two complementary techniques, the Landau theory close b=tBetransition and the exact
diagonalization method for finite systems. This allows us to estimate the size of the critical region and
characterize various crossover regimes. An unexpectedly small energy scale on the disordered side of the
critical line is found, and its possible relevance to experiments on metallic glasses is briefly discussed.
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[. INTRODUCTION The random interactiond;; are chosen to be infinite range
and Gaussian distributed with variantehat sets the unit of
Understanding disordered systems is one of the maienergy in the model, whila=(h",0h%). This model has an
challenges of condensed matter physics, since the presenegperimental realization in the LiY ,Ho,F, compound that
of disorder is always unavoidable in experiments. When dishas been the subject of recent experiméhtsin this insu-
order is strong it can dominate the physics and lead to exotitating compound, the ground state of the magnetically active
states of matter such as the glassy phaSg® most salient Ho ions is the low-energy Ising doublet. In addition to that,
properties observed in glassy systems are the slow dynamictile long-range nature of dipolar interactions between the
relaxation and history dependence of thermodynamics. Respins enables us to perform the treatment in the large coor-
search on quantum spin systems is of primary importancédination limit. Disorder in the system arises from the fact
because of potential technological applications. Current workhat the substitutions of the Y atoms by the Ho ions are
in quantum computing and spintronics, where the underpositionally random. The strong randomness leads to the
standing of relaxation processes is cruéilis boosting a clear observation of the spin- and ferroglass phases at low
renewed interest in basic models of disordered quantumoncentratiorx.'?
magnets. To investigate the transition in the system described by
The goal of the present work is to consider the randonthe Hamiltonian(1), we employ two methods that comple-
Ising model that displays a quantum paramagnet to spin glassent each other in their scope and range of applicability. The
transition driven by fluctuations introduced by an externalmain theoretical tool we use to obtain the detailed analytic
magnetic field. We tackle the problem by utilizing two dif- behavior is based on the Landau theory apprd&chhough
ferent theoretical approaches. We solve the model using thattractive, this method is rigorously valid only close to the
recently introduced technique of exact diagonalization thaguantum critical point, so that the actual range of applicabil-
includes the averaging over an ensemble of disorder realizaty of this approach is always difficult to assess. Hence, in
tions in a finite system. The relevant results are then obtainedddition, we also use the exact diagonalization scheme, in
by extrapolation of the data to the thermodynamic lifrfit. which one has to obtain the solution Bif for a number of
This method allows for a direct investigation of tie=0 explicit realizations of disordeftypically several tens of
behavior in the whole range of parameters, circumventingthousands The procedure is implemented on finite systems
thus, the usual technical difficulties encountered in the repef up to 17 spins. The physical observables, such as gaps or
lica formalism. On the other hand, to investigate in detail thespectral functions, are obtained along the lines of Ref. 5. In
critical behaviof we formulate the Landau theory in the this approach, na priori assumptions are made, and its
vicinity of the quantum phase transitiéfi.The consistency validity is limited by the reliability of the required extrapo-
check of results obtained using those two approaches allowations to the large size limit. The main reason for success of
us not only to confirm their reliability, but also to identify an the previous applications of the method is that for high con-
unexpectedly narrow subregime near the phase boundary, imectivity models the numerical extrapolation to the thermo-
which the rapid onset of the glassy ordering occurs. We disdynamic limit is rather well behaved. Nevertheless, as we
cuss the significance of our findings for the current experishall see and discuss later on, in the present study we find a
ments on metallic glassés. certain range of parameters,where the previous statement
We consider the random Ising model that is placed in aloes not hold. Remarkably, this circumstance allows us to
magnetic field and that has both the transverse and longitigain new insight into the problem.

dinal components, The work is organized as follows. Sec. Il is devoted to the
explanation of the technical procedure. Results are presented
H= _E JijSZS-Z—E h-S (1) in Sec. lll, and Sec. IV contains the summary of the main
|~ 2 .
|

M results and discussion.
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Il. TECHNICAL REMARKS obtain that the equation determinifi( w,) is the same in

It is useful to characterize the parameter spacé'bgnd both PM and SG phases, and reads

hT, the longitudinal and transverse components of external

magnetic fieldh, respectively. The pure transverse field case, ;. 24,

was the subject of previous investigatichét T=0, the "

existence of the quantum phase transition was established for

a value ofh"~0(J). At this point the spin-spin dynamical 2_y dea
2

1 2y
= > D(w,)+0ea —D2<wn)—;qEAD<—wn>

2 D(w1)D(— w1~ wy)

local susceptibility becomes gapléss? When the longitu- T2 B4

dinal field is turned on, the net longitudinal magnetization is

immediately generated and the critical point extends into a 2y

quantum critical lineh!(h%). This line separates the two ) Y, D(w1)D(w2)D(— w1~ w,— w,)=0.
phases, in which the transverse degrees of freedom of spins KB v

are either disorderedargeh™ andh') or spin-glass ordered 3

(small h™ and h'). As we shall show, the excitation gap
closes at this critical line, becoming very small in some
crossover region on the disordered side of the line.

This equation must be supplemented by

2y o k(hb)?
2D(0)qgeat _quA+T:0 (4)
A. Landau theory 3«
The Landau functional is constructed using the cumulanin the PM phase and
expansion about the quantum critical point at zero longitudi-
nal field. Both the term with random interactions and the part g2,=—[D(0)x?]ly (5)
with longitudinal field in the Hamiltoniaril) are treated as
perturbations. This procedure implies that the longitudinain the SG phase, to comprise the full system to be solved
magnetic fieldh" is small compared to the primary micro- Self-consistently. Though the exact treatment of this system
scopic energy scale’~J. The derivation is straightforward IS not possible, we can obtain the leading order of the correct

and leads to the following Ginzburg-Landau action solution close to the quantum critical point. We consider here
only the case off =0, so that all the sums over Matsubara
[+ w2 u 2 frequencies are substituted by the corresponding integrals.
BF= >, ( n) Q**(wn)+ 55 > Q*(w,) We note first that, ify=0, the complete solution is easily
aep | K B [ derived to bé D(w,)=— w2+AZ The gapA?, that turns
K to zero right at the critical point, is determined using the
-3 %C ; Q" (@y) Q°%(@y) Q°¥ wp) following identity:
Ly2 de AZ A2
B oan=0)- [ [ arar, | (w2t s e, 0. (6)

In Eq. (6) A, is the upper frequency cutoff are] is some
X% [Q*°(m—72)]* (2)  constant of order unity. Let us assume that fot0 the
leading approximation ob(w,) contains the same square-

Herer, being some regular function &f'/J, is the parameter oot singularity as foly=0, and analyze how the last two
that governs the transition in the absence of the longitudingierms in Eq.(3) affect the solution in the leading approxima-
field ht, while u and y are taken at the critical point fion. Simple inspection reveals that in the prelast term it is
(h/3).~0O(1). It is important to retain the quartic term, Sufficient to putw,=0, A=0 while calculating the integral
responsible for the replica symmetry breakif@®SB) over wq. This contributes only to the renormalization of the

instability® We must insert then the mean-field ansatz coefficientu beforeqea, so thatugea—UiQea.
The last term requires, however, the calculation of the
D(wn)+BAeads, 0 a=b integral
kQ¥®(w,)= !
Q™ (wn) ,Bqab5wn,o a#h, do; (do; — 5 o3
K(A,op)= | 5— | 5—Voi+A Vos+A

into Eq. (2) and vary subsequently the free energy with re-
spect toD(w,), Qea, andq,,. The parametrization oy, X (w14 wp+ w,)°+A? (7)

depends, however, on the phase under consideration. In the

disordered paramagnetic pha$§|\/|) we must use the that is difficult to perform exactly for arbitrary)n and A2,
rep”ca_symmetric ansauab: Jea- while in the Spin-g|ass We need, however, Only the Ieading behavior of this integral
phase(SG) the solution with a broken symmetry should be Providedw,,A<1. A simple estimate yields

used®® The variational procedure is lengthy albeit identical )

to that performed in the previous works. As a result, we K(A,0p)=A+Bwp+C1A%IN(C,/A), ®
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where the constant, B, C;, andC, are some cutoff\ , 3
dependent functions. We see that the first term in the above
expression renormalizes the critical valug (equal to 25t
uA2/27 for y=0), while the contribution from the second
one can be simply absorbed by the appropriate rescaling of ol °
temperaturél in w?. The third term in Eq(8) leads to the
renormalization of the coefficient before the-dependent & 45t
part of Eq.(6). £
Similarly as in Ref. 8, we obtain that in the PM phase - l
D(wn) = —yagn/ k>~ i+ A%, o5 | -
2 I —re+UQea ) 0 . ‘ ‘ .
Up IN[C U, /(r =T+ Uren) ] A ‘

.
whereC, u4, andu, are again somd , dependent functions

of the order unity. FIG. 1. Inverse of the third inverse moment as a functiohof

The intercept of the dashed line with the horizontal axis gives an
estimate of the criticthI. The inset shows the same quantity as a
B. Numerical diagonalization function of the inverse of the system size fof=0.75,0.8,0.9,1.

r?.;he dotted lines indicate the linear fits for the extrapolation of this

The general strategy is to take samples from the rando ) S
quantity to the thermodynamic limit.

ensemble of systems of si2¢ and exactly diagonalize the
ensuing Hamiltoniangl). The different physical quantities
are computed for each realization and then averaged over t
number of samples. Finite size effects are analyzed and r
sults are extrapolated to the thermodynamic linht—¢ ).
Typically, systems with up tdi=17 spins can be dealt with. P[] =1 (12)
Averages are performed over several thousands to hundreds Xioc
of thousands of disorder realizations. Atyplcal run demandﬂ]dicates the |nstab|||ty of the System toward a Spin_g|ass
up to a week for the larger systems on an eight-node parallgjiate.
cluster. The ground state and the dynamical correlation func- |n previous papefs’ the accuracy of the method was
tions atT=0 are calculated by the Lanczos mettfd. demonstrated by reproducing several known results for the
The local spin susceptibility is obtained from infinite-range Ising model with random exchange interac-
tions and transverse magnetic fighd!* (i.e., the present
1 model with h*=0). In particular, an accurate estimate for
<‘ng)|3.zﬁs.z|¢f)m)> , the critical value of the transverse field , at which the
w—H o ;
quantum transition between the spin-glass and the paramag-
(100 netic phases takes place, was obtained.

whereM is the number of realizations of disorder dﬂ!ﬁm)> _(ii) A second criterion that_signals the instability toward_a
spin-glass phase is the closing of the gap of the dynamical

denotes the ground state for thg set corresponding to the N LT T o .

mth realization. Although we deal with systems having as_usceptlblll_ty. Th'?’ criterion is called thcaargmaht_y condi- .

finite number of poles for each realization, the average ove on or replicon criterionand h?gs already been discussed in
he context of related models:

disorder naturally produces smooth response functions with- . .
Under the reasonable assumption of a clean gap in the

out the need of introducing an artificial broadening as in ;
usual exact diagonalization methods. In some cases, aramagnetic phase and a lower-frequency edge of the spec-
"(0)=—2Im[ x{Z(w)] that grows faster than

found that it is useful to use a logarithmic discretization of ral functiony

the w axis to obtain accurate results due to the large numbéefuadratic, it is easy to see that the closing of the gap implies
of poles occurring at low frequencies. a divergence in the third inverse moment)df{ »).

Two criteria can be used to obtain the boundary of the 1Nhus, we establish the closing of the gap by computing
quantum transition from the paramagnetic to the spin-glasi’® quantity

H@ere([ XiZ:]?) denotes the site and realization average of
dhe quantity between square bracketswat0 in Eq. (10).
Thus, the condition

Z|r

1 M
NATOE) gy
m=1 i=1

phase. "
(i) The onset for spin-glass order is naturally signaled by m(-3)— f“’d_w X" (o) 13
the divergence of the spin-glass susceptibilits, which is 027 3

related to the local-spin susceptibility by
at given values oh- and system sizBl, and then looking for

(2T the vanishing of the extrapolations [of/m(~)] to the limit
Xsc= > loc ST (11)  of large systent? The procedure is illustrated in Fig. 1. The
1-3%[xiocl) estimate of 1/m(®)] in the thermodynamic limit is obtained
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FIG. 2. Spectral functiony|,.(») for N=12, h*=0, andh” FIG. 3. The estimates ofA(h'—h{) at h*=0 and h'

=0.71,0.72,0.73,0.74,0.75,0.8,0.9,1,1.5. Data ldr-0.71 were =0.72,0.73,0.74,0.75,0.8,0@ottom to top for different system
r|g|d|y shifted down in frequency a|ong the axis in order to SiZeS,N:8,12,16. The dotted lines indicate the linear fits for the
overlay all the low-frequency edges. The shifts provide the esti€xtrapolation of the gap to the thermodynamic limit. The good qual-

mates for the magnitude of the gAth_ hl—) for the given System |ty of the linear fit does not I‘equire the use of intermediate SyStem
size. sizes.

by recourse to linear fits as indicated in the inset of this
figure. The accuracy of this alternative method was tested for (A) In this regime, in whicth<(r —r )34, qe, is the

the casér" =0 where good estimates bf are available. By ~ gmallest parameter and can be treated as a perturbation. As a

a linear fit of the points closer ﬂmI (cf. Fig. 1), we obtained  result, we obtain with the logarithmic accuracy, thgt,

hI=0.72t 0.01, which is in agreement with previously re- = (x(h‘)?)/4A, A%{(r—rc)/uzln(ll(r—rc)}l’z. This equa-

ported valued:*>*4 tion shows that wheh" becomes nonzergg, also becomes
Finally, we also computed the dependence of the gap ofinite even in the PM phase due to the finite magnetization

the transverse field. Numerically, the calculation of the sizealong the longitudinal axis.

of the gap is more challenging than the calculation of inte- The expression for the gap was first obtained in Refs. 13

grated quantities such ag,.. The origin of the difficulties and 20 that considered th&=0 case. To answer the ques-

is that for any given realization af;; , poles inx”(w) may tion of the region of validity of the Landau approach, we use

appear at frequencies substantially smaller than the actu#the exact diagonalization method to obtain the gap as a func-

value of the gap but with a very small weight. Averaged overtion of h' at h-=0. The results are shown in Fig. 5. The

disorder, these poles will contribute with no significant sta-agreement at small values &f demonstrates the reliability

tistical weight to the line shape of'(w). However, a naive of our methods and gives an indication of the size of the

determination of the value of the gap through the criterion ofcritical region.

the average position of the lowest-frequency pole, would (B) This region is characterized by the conditidn

lead to a substantial underestimate of the position of the gap; r|¥*<h. In the leading approximation A

since no information on the spectral weight is used. There-

fore, we need a more accurate method for the determination

of the gap. We used the following procedure. First, we get an

accurate estimate of the critical transverse fiali{(h").

Then, at any given system size ahl, we obtain the dy-

namical response for various values lof>h!. We then

rigidly shift the spectra down in frequency until we get the h

collapse of the low-frequency edges. As illustrated in Fig. 2

there is a very weak dependence of the shape of the edge

with hT, that makes this procedure sound. Then, simply from

the energy shift we get estimates of the gap at the ghten

and system sizBl. Finally, aN— o extrapolation of the gaps

is made assuming a simple linear inNlbehaviort* as

shown in Fig. 3.

/
/

Ill. RESULTS ) ) )
FIG. 4. Schematic phase diagram predicted by the Landau

As a result of solution of Eqg3) and(4), one can distin-  theory. The dashed lines denote crossovers while the full line is a
guish the following regimes on a&f,h‘) plane(see Fig. 4 critical line.
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FIG. 5. Gap vs transverse field ath-=0 (open circles The FIG. 6. SG-PM phase boundary obtained with exact diagonal-
fitting function from Eq.(9) with ggo=0 is plotted in the solid line. ization. Filled and open circles correspond to the two different cri-
The arrow indicates the critical field. teria (i) and (ii), respectively(see text. The solid line corresponds
to the fitting functionh=h!—2.2(h")=,

~{(uyk(h“)2)/4u, In(1/(hH) #3113, while Oea

size effects. We analyze below each of these possibilities,
trying to understand their origins and their physical implica-
tions.

The Landau theory has been successful to describe the
Seritical behavior of the model with, =0. The independent

~{(x(h")?14)\(u /up)In(L/(h") T},

(C) This regime, in which(;—r)¥*>h", is the closest to
the T=0 critical boundary. The Edwards-Anders@A) or-
der parameter, that crosses over to its value in the glas

phase, is giveanngAz[(rC— r)/ui]+ (u22A2/u21) Izn[llAZ], methods, such as one-loop expansidthe exact solution of
with A~[xuy(h™)“/4(rc—r)]—[2y(rc—r)/3uik]. From 4 velated rotor mod# as well as numerical methods, similar
t_hls expression it is easily seen thiatvanishes at the critical g the ones considered in the present whidad to the same
line given by picture. In addition, no doubts seem to rise u;;)u%n its validity
to describe the critical region of the model with=0, the
h"=(8y/3)[(re=r)/upx]* (14 classical Sherrington-KirI?patrikSK) model in a longitudi-
Sincer is a regular function oh'/J, so that fc—f)“(hz nal field at .finite temperatur@. In thellatter case, andau
—hT), we see that the gap vanishes at the line that is in fadf€ory predicts the so-called de Almeida ThoulgSE) line,
determined b)héoc(hl—hT)?"z. dividing t?/(za pa_ramagnetlc_phase from the ordered bbe
Finally, in the SG phase «(T,—T)% beingT, the.cr|t|cal temperaturOn the other
hand, ath-=0 the numerical method shows no problem and
D(w,)= —VQ§A/K2—|wn|, Uea=(ro—r)luy, (15 is consistent with the Landa_lu_ thep@yf. Fig. 5_and Ref. % _
So, as a further test of the finite-size effects in the numerical
resulting in a gapless form of the spectral dengiti{w) method, we decided to investigate the behavior along a dif-
. ferent axis, namely, the temperature axis that allows for ad-
We would like now to discuss the nature of the crossoveditional comparison to the Landau theory in the"(T)
between subregime&) and (C) in more detail. A rather plane. Thus, we evaluateld([ x{Z.]%) for the SK model as a
surprising result, one obtains from the exact diagonalizatiofunction of T for systems of the same size as those used in
method, is that in fact the freezing transition of the transversehe quantum case, and performed the extrapolations to the
degrees of freedom takes place at the critical boundary linenhermodynamic limit with the same criteria. Details of the
given byhipoc(hl—hT)%* (see Fig. 6. This result was veri- numerical procedure to obtain the behavior of the latter
fied by the two different criteria discussed in Sec. II B, quantity in the thermodynamic limit are shown in Fig. 7. At
namely, the divergence of the spin-glass susceptibility givera givenh, the critical temperature then is determined from
by JX[x{Z.]?)=1, and the vanishing of the excitation en- the conditionJ*([ x{-.]?)=1. The resulting critical line is
ergy gap of the regular part of the dynamical spin susceptishown in Fig. 8. Interestingly, we found similar discrepan-
bility. It is notable that the extrapolations to the thermody-cies as before, since numerical calculations suggest that the
namic limit for these two different freezing transition criteria critical temperature ifi;= (T,—T)%* instead of the correct
do agree well. However, these results seem paradoxical singesult with a critical exponent 3/2. This fact led us to suspect
the Landau theoryl4) predicts a phase transition boundary that the numerical procedure fails to capture the correct
with a different functional form, namelyhio(h!—h")%2  boundary at finiteh, . Furthermore, very large finite-size ef-
(and different curvature, see Fig). 4 fects have been recently reported also in the classical
At this stage we are faced with two possibilities to solvemodel? Note that in the latter work, special methods valid
this paradox(i) The Landau theory fails to properly describe only for the classical model allow for the numerical solution
the correct boundaries between the different phases of thef systems much larger than the ones considered here. De-
model. (ii) The numerical results suffer from severe finite- spite the large sizes of the samples, the correct transition line
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for systems of the size that one can diagonalize, the physics

147 of the small gap is masked by the finite-size effects, affect-
12| | ing, thus, the validity of extrapolations.
____________ -0 - @@ This kind of effects is well known in the context of one-
1t . dimensional models. The latter are excellent laboratories to

test the reliability of numerical methods since independent
results by conformal field theory and Luttinger liquid theory
are available. In some cases, even the exact solution is pos-
sible by recourse to the Bethe Ansatz technique. For this
reason, let us make a brief review of some features observed
in the one-dimensional Hubbard model, which might help as
02 | | a reference and illustration of a similar situation as the one
we have described above. The Hubbard model is exactly
0 0 0b2 061 056 008 01 o4z oua ode solvablg yvith Bethe Ansatz and is known to be an insulator

: : TN . ' at half-filling for all positive values of the Coulomb repul-

sion U. A detailed study of the exact solutifreveals that
FIG. 7. ([x%]? for the SK model ath,=0.05 and T the charge gap is exponentially small for smidll while it
=0.23,0.26,0.29,0.32,0.35,0.38,0.41 as a function of the inverse @rows linearly withU when this parameter overcomes a criti-
the system size. The linear fits to perform the extrapolations to th€al value. A finite system is characterized by discrete levels
thermodynamic limit are indicated in dashed lines. The quality ofSeparated by finite-energy gaps. In particular, there is a
the fits is similar for allh, andT. finite-energy gap between the ground state and the lowest
charge excitation, which is the relevant excitation to evaluate
is still not properly captured. Thus, it seems that within thethe charge gap. The charge gap is related to the coherence
present state of the art of numerical methods and the avail€ngth for the charge propagation. Extrapolations of the gap
able computing power there is no hope to overcome th@ased on data correspondlng to systems with Iengths. smaller
problem of the finite-size effects near the critical line at finitetNan the coherence lengtiwhich can be very large within
longitudinal field. f[he smallU regime Iez_id to the prediction of a \_/anlshlng gap
In light of these results let us further scrutinize the pre-N the thermodynamic limit, thus concludingncorrectly

dictions of the Landau theory. In particular, it is important to that dth_e systerg '3 Eegl'ca Slmléarl d'ﬁ!cﬁlt'es arel (_ancc:un-
note that, in the presence of the nonzero longitudinal fielgtered in extende ubbard models with a metal-insulator

the critical behavior of the gap is different thantét=0. It trar|\1/'|5|t|0r!. ; i the implicati ¢ h I
takes a much slower, linear fort( 6r)~ &r (6r is the dis- ore interesting are the implcations of such a small en-

tance to the critical ling becoming the new effective small ?rgy fﬁal% Inl ciset_of th? Hutf)ba;rd mt(_)del, ]csltlr?hthepartures
energy scale that characterizes the regi@n This linear rom the ideal situation of periect nesting of the Fermi sur-

regime ofA(Sr) crosses over to the reginB), at values of face dge to dlsor_der, additional interactions or g_eometncal
frustration, result in the occurrence of a true metallic phase at

e L\2/472/3) 1341/ Ly4/ half-filling within the smallU region. At the same time, the
o r=Lrcun (N5 741z In TUhH*), (16) insulating phase at largér is more robust and survives such
renderinghto(h!—hT)¥* up to an inessential logarithmic perturbations. In the Ising model with two fields studied in

prefactor. Remarkably, this is precisely the functional formthis work, an analogous behavior can be expected, and it is
obtained for the critical lindand gap closujefrom the nu-  likely that the small gap within the regio€) may be also

merical calculation. Therefore, we are led to conclude thaflifficult to observe in experiments as well as in numerical
calculations. In the classical case, the numerical results can

0.3 : : be an indication that the free energies of the ordered and
paramagnetic phases are actually very close within a cross-
over region in the if-,T) diagram, equivalent to the region
(C) of Fig. 4. This may be also a possible explanation to the
anomalous behavior observed in experimental studies of the
AT line.?* In contrast, in regiongA) and (B), ther depen-
dence of the gap assumes a form similar to the zero-field
limit [see Eq(9), except that the variableis shifted by the
quantity u,qea]. Since in region(B) (dropping logarithmic

o1 correction$ qega~(h)*3 we conclude that the crossover

0.05 line separating region&B) and (C) may play a role of an

' apparentcritical line, below which the gap, although finite,

o ‘ ‘ may assume unobservable small values.
0 0.1 L 0.2 0.3
h IV. SUMMARY AND CONCLUSIONS
FIG. 8. T as a function of the longitudinal field, in the SK We have investigated tHE=0 phase diagram of the fully
model. The fitting function i&,=T(h,=0)—0.7h{". connected Ising model with random exchange interactions in

064419-6



MELTING TRANSITION OF AN ISING GLASS DRIVEN.. .. PHYSICAL REVIEW B69, 064419 (2004

the presence of longitudinal and transverse magnetic fieldfkef. 8 and for which essentially identical arguments apply. In
We have used the complementary techniques: the Landahis case the dynamical exponentzis 1, and we find that
theory and exact diagonalization to determine the phasthe crossover energy scaleorresponding to the gap in the
boundaries in the planehf,h™), as well as the behavior of Ising casg behaves as ~ 6r? and corresponds to a cross-
the spin gap close to the transition. We found that while botlover temperature separating the Fermi liquid regiatelow
methods fully agree for vanishing small longitudinal fields, aT) from the quantum critical regim@t highT). The second
different critical boundary is predicted at finitd. We have power in dr indicates an even broader quantum critical re-
also employed the same methods to determine the dgime than in the Ising case. Such an extended quantum criti-
Almeida-Thouless transition line in the classical cal region may result in enhanced dissipation at low tempera-
(Sherrington-Kirpatrik model as a function of temperature tures, a possibility which may bear relevance for the
finding the same kind of discrepancy. Since the Landawpuzzling absence of weak localizatidimterference correc-
theory predicts in this case the expected correct behavior, wiions in certain two-dimensional electron gases in the low-
conclude that the numerical results are likely to be affectedlensity regime.
by finite-size effects. A careful analysis of the behavior of the
gap given by the Landau theory, points towards the possibil-
ity that the transition line observed by the numerical method
is actually a crossover line at which the gap changes its be- We thank S. Sachdev for useful discussions and sugges-
havior as a function of the transverse field, assuming veryions. M.J.R. acknowledge support from Fundacion Antor-
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