276 research outputs found

    Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer

    Get PDF
    We studied the presence of lymphangiogenesis in lymph node (LN) metastases of breast cancer. Lymph vessels were present in 52 of 61 (85.2%) metastatically involved LNs vs 26 of 104 (25.0%) uninvolved LNs (P<0.001). Furthermore, median intra- and perinodal lymphatic endothelial cell proliferation fractions were higher in metastatically involved LNs (P<0.001). This is the first report demonstrating lymphangiogenesis in LN metastases of cancer in general and breast cancer in particular

    Evaluation of volumetric modulated arc therapy (VMAT) with Oncentra MasterPlan® for the treatment of head and neck cancer

    Get PDF
    Background Several comparison studies have shown the capability of VMAT to achieve similar or better plan quality as IMRT, while reducing the treatment time. The experience of VMAT in a multi vendor environment is limited. We compared the plan quality and performance of VMAT to IMRT and we investigate the effects of varying various user-selectable parameters. Methods IMRT, single arc VMAT and dual arc VMAT were compared for four different head-and-neck tumors. For VMAT, the effect of varying gantry angle spacing and treatment time on the plan quality was investigated. A comparison of monitor units and treatment time was performed. Results IMRT and dual arc VMAT achieved a similar plan quality, while single arc could not provide an acceptable plan quality. Increasing the number of control points does not improve the plan quality. Dual arc VMAT delivery time is about 30% of IMRT delivery time. Conclusions Dual arc VMAT is a fast and accurate technique for the treatment of head and neck cancer. It applies similar number of MUs as IMRT, but the treatment time is strongly reduced, maintaining similar or better dose conformity to the PTV and OAR sparing

    Alterations in anatomic and functional imaging parameters with repeated FDG PET-CT and MRI during radiotherapy for head and neck cancer: a pilot study

    Get PDF
    Background: The use of imaging to implement on-treatment adaptation of radiotherapy is a promising paradigm but current data on imaging changes during radiotherapy is limited. This is a hypothesis-generating pilot study to examine the changes on multi-modality anatomic and functional imaging during (chemo)radiotherapy treatment for head and neck squamous cell carcinoma (HNSCC). Methods: Eight patients with locally advanced HNSCC underwent imaging including computed tomography (CT), Fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)-CT and magnetic resonance imaging (MRI) (including diffusion weighted (DW) and dynamic contrast enhanced (DCE)) at baseline and during (chemo)radiotherapy treatment (after fractions 11 and 21). Regions of interest (ROI) were drawn around the primary tumour at baseline and during treatment. Imaging parameters included gross tumour volume (GTV) assessment, SUVmax, mean ADC value and DCE-MRI parameters including Plasma Flow (PF). On treatment changes and correlations between these parameters were analysed using a Wilcoxon rank sum test and Pearson’s linear correlation coefficient respectively. A p-value <0.05 was considered statistically significant. Results: Statistically significant reductions in GTV-CT, GTV-MRI and GTV-DW were observed between all imaging timepoints during radiotherapy. Changes in GTV-PET during radiotherapy were heterogeneous and non-significant. Significant changes in SUVmax, mean ADC value, Plasma Flow and Plasma Volume were observed between the baseline and the fraction 11 timepoint, whilst only changes in SUVmax between baseline and the fraction 21 timepoint were statistically significant. Significant correlations were observed between multiple imaging parameters, both anatomical and functional; 20 correlations between baseline to the fraction 11 timepoint; 12 correlations between baseline and the fraction 21 timepoints; and 4 correlations between the fraction 11 and fraction 21 timepoints. Conclusions: Multi-modality imaging during radiotherapy treatment demonstrates early changes (by fraction 11) in both anatomic and functional imaging parameters. All functional imaging modalities are potentially complementary and should be considered in combination to provide multi-parametric tumour assessment, to guide potential treatment adaptation strategies. Trial Registration: ISRCTN Registry: ISRCTN34165059. Registered 2nd February 2015
    • …
    corecore