121 research outputs found

    AC/DC conductivity and dielectric relaxation behavior of aqueous solutions of 1-butyl-3-methylimidazolium chloride

    Get PDF
    The complex relative dielectric function ɛ*(f) = ɛ' - jɛ" of aqueous solutions of 1-butyl-3-methylimidazolium chloride [BMiM][Cl] of varying concentrations, has been measured using precision LCR meter in the frequency range 20 Hz to 2 MHz at four different temperatures 293.15, 303.15, 313.15 and 323.15 K. Complex ac conductivity σ*(f) of the liquid samples have been determined from the measured ɛ*(f). DC conductivity σdc of the samples have also been determined. Values of σdc at different concentrations have been fitted to the empirical Casteel-Amis (CA) equation. The influence of concentration and temperature variation on the complex permittivity and electrical conductivity of the solutions of [BMiM][Cl] in distilled water has been discussed. The molar conductivities and the infinite dilution conductance of these ionic liquids have also been determined. Orientational relaxation behavior of the aqueous solutions of [BMiM][Cl] has also been studied by measuring complex permittivity in the frequency range 1 GHz to 20 GHz using vector network analyzer. Various processes contributed to the electrical/dielectric properties of the solutions of [BMiM][Cl] in distilled water have been explored

    Effect of CdSe quantum dots on hole transport in poly(3-hexylthiophene) thin films

    Get PDF
    This letter demonstrates the effect of cadmium selenide (CdSe) quantum dots on hole transport in poly(3-hexylthiophene) (P3HT) thin films. Current-voltage characteristics of P3HT and P3HT:CdSe thin films have been studied in the temperature range of 288–85 K, in hole only device configurations, i.e., indium tin oxide (ITO)/poly(ethylene-dioxthiophene):polystyrenesulphonate (PEDOT:PSS)/P3HT/Au and ITO/PEDOT:PSS/P3HT:CdSe/Au. The incorporation of CdSe quantum dots in P3HT results in the enhancement in hole current and switches the transport from dual conduction mechanism, viz., trap and mobility models to only trap model. This is attributed to the reduction in characteristic trap energy from 60 to 32 meV and trap density from 2.5×1018 to 1.7×1018 cm−3

    Structural Modification in Carbon Nanotubes by Boron Incorporation

    Get PDF
    We have synthesized boron-incorporated carbon nanotubes (CNTs) by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds

    Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Get PDF
    Carbon nanotube (CNT) films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i) mirror polished, (ii) catalyst patterned, (iii) mechanically polished having pits of varying size and shape, and (iv) electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure) structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples

    Withanolides and related steroids

    Get PDF
    Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a δ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing γ-lactones in the side chain that have come to be at least as common as the δ-lactones. The reduced versions (γ and δ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types. Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae. Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Oberti, Juan Carlos María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinario de Biología Vegetal (p); Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (i); Argentin
    corecore