260 research outputs found

    On stability of the three-dimensional fixed point in a model with three coupling constants from the ϵ\epsilon expansion: Three-loop results

    Full text link
    The structure of the renormalization-group flows in a model with three quartic coupling constants is studied within the ϵ\epsilon-expansion method up to three-loop order. Twofold degeneracy of the eigenvalue exponents for the three-dimensionally stable fixed point is observed and the possibility for powers in ϵ\sqrt{\epsilon} to appear in the series is investigated. Reliability and effectiveness of the ϵ\epsilon-expansion method for the given model is discussed.Comment: 14 pages, LaTeX, no figures. To be published in Phys. Rev. B, V.57 (1998

    Statistics of Lyapunov exponent in one-dimensional layered systems

    Full text link
    Localization of acoustic waves in a one dimensional water duct containing many randomly distributed air filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties are also explored extensively. The results reveal that in this system the single parameter scaling is generally inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This contradicts the earlier observations in an optical case. We compare the results with two optical cases and give a possible explanation of the origin of the different behaviors.Comment: 6 pages revtex file, 6 eps figure

    Theory of optical spectra of polar quantum wells: Temperature effects

    Full text link
    Theoretical and numerical calculations of the optical absorption spectra of excitons interacting with longitudinal-optical phonons in quasi-2D polar semiconductors are presented. In II-VI semiconductor quantum wells, exciton binding energy can be tuned on- and off-resonance with the longitudinal-optical phonon energy by varying the quantum well width. A comprehensive picture of this tunning effect on the temperature-dependent exciton absorption spectrum is derived, using the exciton Green's function formalism at finite temperature. The effective exciton-phonon interaction is included in the Bethe-Salpeter equation. Numerical results are illustrated for ZnSe-based quantum wells. At low temperatures, both a single exciton peak as well as a continuum resonance state are found in the optical absorption spectra. By contrast, at high enough temperatures, a splitting of the exciton line due to the real phonon absorption processes is predicted. Possible previous experimental observations of this splitting are discussed.Comment: 10 pages, 9 figures, to appear in Phys. Rev. B. Permanent address: [email protected]

    Mars Sample Return: The Value of Depth Profiles

    Get PDF
    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars

    Randomly dilute spin models with cubic symmetry

    Full text link
    We study the combined effect of cubic anisotropy and quenched uncorrelated impurities on multicomponent spin models. For this purpose, we consider the field-theoretical approach based on the Ginzburg-Landau-Wilson ϕ4\phi^4 Hamiltonian with cubic-symmetric quartic interactions and quenched randomness coupled to the local energy density. We compute the renormalization-group functions to six loops in the fixed-dimension (d=3) perturbative scheme. The analysis of such high-order series provides an accurate description of the renormalization-group flow. The results are also used to determine the critical behavior of three-dimensional antiferromagnetic three- and four-state Potts models in the presence of quenched impurities.Comment: 23 pages, 1 figure

    Pressure Effects and Large Polarons in Layered MgB_2 Superconductor

    Full text link
    We consider the dependence of the MgB_2 superconducting critical temperature on the pressure. Our model exploits the influence of the large polarons on the band structure of the layered MgB_2 superconductor. Namely, the hole Pekar-Froehlich polarons form quasi two-dimensional potential wells in the boron plane which shift the positions of the sigma- and pi-bands. This energy shift depends on the pressure and the Cooper pairing of the correlated sigma-electrons happens inside polaron wells. The results obtained are as follows: dT_c/dp = -\alpha (5.2 \pm 0.9) K/GPa or dT_c/dp = -\alpha (6.9\pm 1.1) K/GPa for a different choice of the Grueneisen parameter. Being compared with known experimental data they give us a resonable interval for the value of the Froehlich electron-phonon coupling constant: \alpha = 0.15 - 0.45.Comment: 6 pages, 1 fig, LaTeX, subm. to Phys. Rev.

    Driven diffusive system with non-local perturbations

    Full text link
    We investigate the impact of non-local perturbations on driven diffusive systems. Two different problems are considered here. In one case, we introduce a non-local particle conservation along the direction of the drive and in another case, we incorporate a long-range temporal correlation in the noise present in the equation of motion. The effect of these perturbations on the anisotropy exponent or on the scaling of the two-point correlation function is studied using renormalization group analysis.Comment: 11 pages, 2 figure

    Random Walks with Long-Range Self-Repulsion on Proper Time

    Full text link
    We introduce a model of self-repelling random walks where the short-range interaction between two elements of the chain decreases as a power of the difference in proper time. Analytic results on the exponent ν\nu are obtained. They are in good agreement with Monte Carlo simulations in two dimensions. A numerical study of the scaling functions and of the efficiency of the algorithm is also presented.Comment: 25 pages latex, 4 postscript figures, uses epsf.sty (all included) IFUP-Th 13/92 and SNS 14/9

    Universality of the thermodynamic Casimir effect

    Full text link
    Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has been reported [X. S. Chen and V. Dohm, Phys. Rev. E {\bf 66}, 016102 (2002)]. We reconsider the arguments leading to this observation and show that there is no such leading nonuniversal term in systems with short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier transform of the interaction potential. We also conclude that lattice and continuum models then produce results in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are consistent with the {\em universal} character of the Casimir force in systems with short-ranged interactions. The effects due to dispersion forces are discussed for systems with periodic or realistic boundary conditions. In contrast to systems with short-ranged interactions, for L/ξ1L/\xi \gg 1 one observes leading finite-size contributions governed by power laws in LL due to the subleading long-ranged character of the interaction, where LL is the finite system size and ξ\xi is the correlation length.Comment: 11 pages, revtex, to appear in Phys. Rev. E 68 (2003

    The N-component Ginzburg-Landau Hamiltonian with cubic anisotropy: a six-loop study

    Full text link
    We consider the Ginzburg-Landau Hamiltonian with a cubic-symmetric quartic interaction and compute the renormalization-group functions to six-loop order in d=3. We analyze the stability of the fixed points using a Borel transformation and a conformal mapping that takes into account the singularities of the Borel transform. We find that the cubic fixed point is stable for N>N_c, N_c = 2.89(4). Therefore, the critical properties of cubic ferromagnets are not described by the Heisenberg isotropic Hamiltonian, but instead by the cubic model at the cubic fixed point. For N=3, the critical exponents at the cubic and symmetric fixed points differ very little (less than the precision of our results, which is 1\lesssim 1% in the case of γ\gamma and ν\nu). Moreover, the irrelevant interaction bringing from the symmetric to the cubic fixed point gives rise to slowly-decaying scaling corrections with exponent ω2=0.010(4)\omega_2=0.010(4). For N=2, the isotropic fixed point is stable and the cubic interaction induces scaling corrections with exponent ω2=0.103(8)\omega_2 = 0.103(8). These conclusions are confirmed by a similar analysis of the five-loop ϵ\epsilon-expansion. A constrained analysis which takes into account that Nc=2N_c = 2 in two dimensions gives Nc=2.87(5)N_c = 2.87(5).Comment: 29 pages, RevTex, new refs added, Phys. Rev. B in pres
    corecore