180 research outputs found

    Shallow Neural Network for Biometrics from the ECG-WATCH

    Get PDF
    Applications such as surveillance, banking and healthcare deal with sensitive data whose confidentiality and integrity depends on accurate human recognition. In this sense, the crucial mechanism for performing an effective access control is authentication, which unequivocally yields user identity. In 2018, just in North America, around 445K identity thefts have been denounced. The most adopted strategy for automatic identity recognition uses a secret for encrypting and decrypting the authentication information. This approach works very well until the secret is kept safe. Electrocardiograms (ECGs) can be exploited for biometric purposes because both the physiological and geometrical differences in each human heart correspond to uniqueness in the ECG morphology. Compared with classical biometric techniques, e.g. fingerprints, ECG-based methods can definitely be considered a more reliable and safer way for user authentication due to ECG inherent robustness to circumvention, obfuscation and replay attacks. In this paper, the ECG WATCH, a non-expensive wristwatch for recording ECGs anytime, anywhere, in just 10 s, is proposed for user authentication. The ECG WATCH acquisitions have been used to train a shallow neural network, which has reached a 99% classification accuracy and 100% intruder recognition rate

    Induction Machine Stator Fault Tracking using the Growing Curvilinear Component Analysis

    Get PDF
    Detection of stator-based faults in Induction Machines (IMs) can be carried out in numerous ways. In particular, the shorted turns in stator windings of IM are among the most common faults in the industry. As a matter of fact, most IMs come with pre-installed current sensors for the purpose of control and protection. At this aim, using only the stator current for fault detection has become a recent trend nowadays as it is much cheaper than installing additional sensors. The three-phase stator current signatures have been used in this study to observe the effect of stator inter-turn fault with respect to the healthy condition of the IM. The pre-processing of the healthy and faulty current signatures has been done via the in-built DSP module of dSPACE after which, these current signatures are passed into the MATLAB® software for further analysis using AI techniques. The authors present a Growing Curvilinear Component Analysis (GCCA) neural network that is capable of detecting and follow the evolution of the stator fault using the stator current signature, making online fault detection possible. For this purpose, a topological manifold analysis is carried out to study the fault evolution, which is a fundamental step for calibrating the GCCA neural network. The effectiveness of the proposed method has been verified experimentally

    Double Channel Neural Non Invasive Blood Pressure Prediction

    Get PDF
    Cardiovascular Diseases represent the leading cause of deaths in the world. Arterial Blood Pressure (ABP) is an important physiological parameter that should be properly monitored for the purposes of prevention. This work applies the neural network output-error (NNOE) model to ABP forecasting. Three input configurations are proposed based on ECG and PPG for estimating both systolic and diastolic blood pressures. The double channel configuration is the best performing one by means of the mean absolute error w.r.t the corresponding invasive blood pressure signal (IBP); indeed, it is also proven to be compliant with the ANSI/AAMI/ISO 81060-2:2013 regulation for non invasive ABP techniques. Both ECG and PPG correlations to IBP signal are further analyzed using Spearman’s correlation coefficient. Despite it suggests PPG is more closely related to ABP, its regression performance is worse than ECG input configuration one. However, this behavior can be explained looking to human biology and ABP computation, which is based on peaks (systoles) and valleys (diastoles) extraction

    Tracking Evolution of Stator-based Fault in Induction Machines using the Growing Curvilinear Component Analysis Neural Network

    Get PDF
    Stator-based faults are one of the most common faults among induction motors (IMs). The conventional approach to IM control and protection employs current sensors installed on the motor. Recently, most studies have focused on fault detection by means of stator current. This paper presents an application of the Growing Curvilinear Component Analysis (GCCA) neural network aided by the Extended Park Vector Approach (EPVA) for the purpose of transforming the three-phase current signals. The GCCA is a growing neural based technique specifically designed to detect and follow changes in the input distribution, e.g. stator faults. In particular, the GCCA has proven its capability of correctly identifying and tracking stator inter-turn fault in IMs. To this purpose, the three-phase stator currents have been acquired from IMs, which start at healthy operating state and, evolve to different fault severities (up to 10%) under different loading conditions. Data has been transformed using the EPVA and pre-processed to extract statistical time domain features. To calibrate the GCCA neural network, a topological manifold analysis has been carried out to study the input features. The efficacy of the proposed method has been verified experimentally using IM with l.lkW rating and has potential for IMs with different manufacturing conditions

    Optimized fractional low and highpass filters of (1 + α) order on FPAA

    Get PDF
    This work proposes an optimum design and implementation of fractional-order Butterworth filter of order (1 + α), with the help of analog reconfigurable field-programmable analog array (FPAA). The designed filter coefficients are obtained after dual constraint optimization to balance the tradeoffs between magnitude error and stability margin together. The resulting filter ensures better robustness with less sensitivity to parameter variation and minimum least square error (LSE) in magnitude responses, passband and stopband errors as well as a better –3dB normalized frequency approximation at 1 rad/s and a stability margin. Finally, experimental results have shown both lowpass and highpass fractional step values. The FPAA-configured outputs represent the possibility to implement the real-time fractional filter behavior with close approximation to the theoretical design

    A Comparison of Deep Learning Techniques for Arterial Blood Pressure Prediction

    Get PDF
    Continuous vital signal monitoring is becoming more relevant in preventing diseases that afflict a large part of the world’s population; for this reason, healthcare equipment should be easy to wear and simple to use. Non-intrusive and non-invasive detection methods are a basic requirement for wearable medical devices, especially when these are used in sports applications or by the elderly for self-monitoring. Arterial blood pressure (ABP) is an essential physiological parameter for health monitoring. Most blood pressure measurement devices determine the systolic and diastolic arterial blood pressure through the inflation and the deflation of a cuff. This technique is uncomfortable for the user and may result in anxiety, and consequently affect the blood pressure and its measurement. The purpose of this paper is the continuous measurement of the ABP through a cuffless, non-intrusive approach. The approach of this paper is based on deep learning techniques where several neural networks are used to infer ABP, starting from photoplethysmogram (PPG) and electrocardiogram (ECG) signals. The ABP was predicted first by utilizing only PPG and then by using both PPG and ECG. Convolutional neural networks (ResNet and WaveNet) and recurrent neural networks (LSTM) were compared and analyzed for the regression task. Results show that the use of the ECG has resulted in improved performance for every proposed configuration. The best performing configuration was obtained with a ResNet followed by three LSTM layers: this led to a mean absolute error (MAE) of 4.118 mmHg on and 2.228 mmHg on systolic and diastolic blood pressures, respectively. The results comply with the American National Standards of the Association for the Advancement of Medical Instrumentation. ECG, PPG, and ABP measurements were extracted from the MIMIC database, which contains clinical signal data reflecting real measurements. The results were validated on a custom dataset created at Neuronica Lab, Politecnico di Torino

    Towards Uncovering Feature Extraction from Temporal Signals in Deep CNN: The ECG Case Study

    Get PDF
    Despite all the progress made in biomedical field, the Electrocardiogram (ECG) is still one of the most commonly used signal in medical examinations. Over the years, the problem of ECG classification has been approached in many different ways, most of which rely on the extraction of features from the signal in the form of temporal or morphological characteristics. Although feature engineering can led to adequately good results, it mostly relies on human ability and experience in selecting the correct feature set. In the last decade, a growing class of techniques based on Convolutional Neural Network (CNN) has been proposed in opposition to feature engineering. The efficiency and accuracy of CNN-based approaches is indisputable, however their ability in extracting and using temporal features from raw signal is poorly understood. The main objective of this work was to uncover the differences and the relationships between CNN feature maps and human-curated temporal features, towards a deeper understanding of neural-based approaches for ECG. In fact, the proposed study succeeded in finding a similarity between the output stage of the first layers of a deep 1D-CNN with several temporal features, demonstrating that not only that the engineered features effectively works in ECG classification tasks, but also that CNN can improve those features by elaborating them towards an higher level of abstraction

    Sars-cov-2 and the risk assessment document in italian work; specific or generic risk even if aggravated?

    Get PDF
    In December 2019, several cases of atypical pneumonia were detected in Wuhan city, Hubei province, inland China. The initial outbreak was of considerable size first in China subsequently spread to the rest of the world. Immediately after the epidemic (which according to the World Health Organization had risen to pandemic status), the problem of whether or not to update the occupational risk assessment arose, also considering how the biological risk from SARS CoV-2 should be understood: specific or generic. To this end, we conducted a literature review to identify national health legislation and policies, examining how Italy has addressed the COVID-19 emergency in occupational health planning, in order to develop considerations on the need to update the Risk Assessment Document following the pandemic status. The data that emerged from the review of current legislation allowed us to conclude that the risk from SARS-CoV-2 is in most work activities to be understood as a generic or aggravated generic risk, requiring the employer to apply and control the preventive measures suggested by health authorities to contain the spread of the virus

    How to prevent sars-cov-2 transmission in the agri-food industry during the first pandemic wave: Effects on seroprevalence

    Get PDF
    During the SARS-CoV-2 pandemic, many workplaces were forced to interrupt their activities or alternatively had to prefer a smart way of working, if this was compatible with their activities, to contain the spread of the virus. Some production activities, on the other hand, continued, such as those belonging to the agri-food sector. The aim of the study was to investigate seroprevalence in the workers of an Italian agri-food company following prevention interventions developed in concert with an occupational physician. An observational cohort study was conducted on a population of 328 (100%) workers of a company in the agri-food sector, located in the Sicilian region, which specialized in the production and distribution of citrus fruits. Only one worker was infected with SARS-CoV-2, which later also developed the immune response. No other worker contracted the infection. In conclusion, the measures implemented identified the positive subject for SARS-CoV-2 at an early stage. This made it possible to avoid contagion between the positive subject and the other workers. The occupational physician was also, in this case, essential in decoding and implementing the rules and guidelines useful for the protection of the health and safety of the worker

    A survey on data integration for multi-omics sample clustering

    Get PDF
    Due to the current high availability of omics, data-driven biology has greatly expanded, and several papers have reviewed state-of-the-art technologies. Nowadays, two main types of investigation are available for a multi-omics dataset: extraction of relevant features for a meaningful biological interpretation and clustering of the samples. In the latter case, a few reviews refer to some outdated or no longer available methods, whereas others lack the description of relevant clustering metrics to compare the main approaches. This work provides a general overview of the major techniques in this area, divided into four groups: graph, dimensionality reduction, statistical and neural-based. Besides, eight tools have been tested both on a synthetic and a real biological dataset. An extensive performance comparison has been provided using four clustering evaluation scores: Peak Signal-to-Noise Ratio (PSNR), Davies-Bouldin(DB) index, Silhouette value and the harmonic mean of cluster purity and efficiency. The best results were obtained by using the dimensionality reduction, either explicitly or implicitly, as in the neural architecture
    • …
    corecore