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Due to the current high availability of omics, data-driven biology has greatly expanded, and several
papers have reviewed state-of-the-art technologies. Nowadays, two main types of investigation are avail-
able for a multi-omics dataset: extraction of relevant features for a meaningful biological interpretation
and clustering of the samples. In the latter case, a few reviews refer to some outdated or no longer avail-
able methods, whereas others lack the description of relevant clustering metrics to compare the main
approaches. This work provides a general overview of the major techniques in this area, divided into four
groups: graph, dimensionality reduction, statistical and neural-based. Besides, eight tools have been
tested both on a synthetic and a real biological dataset. An extensive performance comparison has been
provided using four clustering evaluation scores: Peak Signal-to-Noise Ratio (PSNR), Davies-Bouldin(DB)
index, Silhouette value and the harmonic mean of cluster purity and efficiency. The best results were
obtained by using the dimensionality reduction, either explicitly or implicitly, as in the neural
architecture.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, the decrease in cost in next-generation sequencing
(NGS) techniques has enabled the availability of a huge amount
of biological data [1–7]. In particular, various types of omics can
be obtained from the same sample [8]. The term omics refers to a
particular type of molecular data providing a specific perspective
of a biological phenomenon; indeed, it derives from the suffix of
the type of investigation (e.g. genomics, proteomics, transcrip-
tomics, epigenomics) [9–13]. Each of these omics carries partial
information of the biological problem. Then, integrating several
omics can provide a systemic approach for biological problem
investigation. However, despite its informative potential, omic
integration is still an open challenge [14].

Although a single-omic study can identify molecules and
biomarkers of the main pathologies, it can provide only partial
information; nowadays, multi-omics data is fundamental to gain
a more accurate insight and more effective predictions [15–17].
The greater availability of data has allowed many multi-omics
studies [18–24] and fostered the expansion and construction of
public databases to ensemble the greatest amount of data in stan-
dardized file formats and user-friendly interfaces. Examples of
such projects are the Ensemble Genome Project and the Human
Proteome Project, which aim at collecting the major genes and pro-
teins underlying the main biological processes in the cell [25,26].
Other important data repositories are the Genomic Data Commons
(GDC), the Clinical Proteomics Tumor Analysis Consortium, and the
International Cancer Genomics Consortium [27–31]. In such repos-
itories, the main multi-omics data are RNA-Seq, DNA-Seq, miRNA-
Seq, SNV, CNV, DNA methylation, proteomics, whole genome
sequencing, and the genomic variations data (somatic and germ-
line mutation).

In the last decade, the availability of such an amount of data and
information has led to various methodologies and algorithms for
their analysis [32–38]. Concerning single-omic dataset processing,
the two most common types of analysis are:
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1. Extraction of the most relevant features for the detection of new
biological signatures or pathways.

2. Classification and clustering of samples (typically patients) to
create predictive models for a pathology or discover new
molecular subtypes.

In a multi-omics scenario, these two approaches are still valid, but
the algorithms used to integrate and analyze the data need to be
properly modified and optimized.

This work presents the state-of-the-art about multi-omics data
integration, especially concerning the classification and clustering
of samples.

Several papers reviewed the state-of-the-art for multi-omics
integration [39–41]; however, some of these refer to outdated
methods or, sometimes, no longer available [42]. More recent
reviews [43,44] are complete about the sample clustering problem,
but they lack the description of some relevant metrics to realize
which method is more suitable in a specific context. Therefore, in
this survey, specific clustering metrics (Peak Signal-to-Noise Ratio
(PSNR), Davies-Bouldin (DB) index and cluster Silhouette value (S)
are used to compare the various methods.

For simplicity and readability, the various multi-omics methods
will be grouped into four major categories:

1. Graph based. Based on the description of samples such as graphs
or similarity matrices (see Section 2).

2. Dimensionality reduction based. The integration is given by the
joint reduction of the dimensionality among the various omics
(see Section 3).

3. Statistical based. The prevailing approach for the integration is
based on statistics, including Bayesian models (see Section 4).

4. Neural Networks based. Techniques based on the creation of arti-
ficial neural networks, and, in particular, deep learning methods
to integrate multi-omics data (see Section 5).

An algorithm may belong to more than one of the above categories;
in this sense, each method is placed in the most representative one.
Section 6 provides a comparison among the most popular multi-
omics data clustering algorithms, while Section 7 reports the final
considerations in the multi-omics clustering domain.

Table 1 summarizes the methods discussed in the following
sections for integrating multi-omic data.
2. Graph Based

The first group of techniques of the proposed taxonomy deals
with those methods based on the construction of a graph from a
similarity matrix: the nodes are the samples, while the edges rep-
resent their relationship intensity, measured as the distance (Eucli-
dean or correlation-based) between the samples. Various
approaches can be followed to generate a consensus from these
similarity matrices. In the following, the major algorithms are
presented.
2.1. SNF

The Similarity Network Fusion (SNF) [45] starts from the simi-
larity matrices of the original data and creates a consensus through
an iterative algorithm: at each step, the matrices from individual
omics are updated, accounting for relevant contributions from
the others. This approach has outperformed single-omic studies
in some problems such as identification of cancer subtypes and
prediction of survival rates when combining mRNA expression,
DNA methylation and miRNA expression. The method is simple
and fast but requires to have the same samples across all omics.
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2.2. MultiSpC

Multi-view spectral clustering (MultiSpC) [46–50] is a general-
ization of the spectral clustering technique [51] to the multi-omics
case. It is based on graphs in which the samples are the nodes and
the distances between samples are the arcs. The generalization is
based on the Minimizing Disagreement (M-D) algorithm, where
samples in two (or more) omics should cluster the data in order
to reduce the disagreement between the clustering. As per SNF,
the algorithm needs to have the same samples across all omics,
while the number of features may differ.

2.3. NEMO

Neighborhood-based multi-omics (NEMO) [52] clustering is a
graph-based approach which computes, for each omic, a patient
similarity matrix using the Euclidean distance. The similarity
matrices are merged into a single matrix, which it is fed to the
spectral clustering algorithm to determine, for each sample, the
corresponding cluster. This approach is quite efficient because a
high-dimensional problem is reduced to a lower one by computing
the Euclidean distances among samples (the amount of data is
some order of magnitude smaller than the number of features).
Its main strength consists of the potential in dealing with partial
datasets, where the data related to a patient can be available only
for a subset of omics. Also, NEMO can perform data clustering
without performing data imputation, and it proved to reach com-
parable results to state-of-the-art algorithms, which by contrast,
work only on complete datasets. However, its major limitation
resides in the use of Euclidean distance metric: in a high-
dimensional space, samples are more spaced (large inter dis-
tances), thus disrupting the meaningful signal inside the dataset.
A potential solution could be the use of other distance measures,
such as L1-Minkowski and correlation-based distances.

2.4. PINSPlus

Perturbation clustering for data integration and disease subtyp-
ing (PINSPlus) [53,54] exploits a similarity-based algorithm to
merge the connectivity among samples across all omics. Patient
connectivity data are stored in a graph where samples are nodes
and distance measures are edges. The novelty of this approach con-
sists in the stability of the clusters, which are tested under three
conditions: 1) perturbing the input data, 2) selecting different
omics at a time, 3) changing the clustering algorithm. Samples
are then grouped together according to the stability across these
perturbations using a hierarchical structure search. Although this
method is really flexible (the user can select the preferred cluster-
ing methods), some biological relationships can be clear only with
some clustering methods and not with others according to the
input data distribution. In this sense, the role of the user is impor-
tant in obtaining significant results.
3. Dimensionality reduction based

Another approach, called Joint Dimensionality Reduction (jDR),
consists in applying dimensionality reduction techniques on the
input space, accounting for the features of the different omics. This
is achieved through several algorithms aimed at extending to mul-
tiple input datasets the dimensionality reduction techniques
applied to single matrix processing.

The goal is the projection of the high dimensional omics into a
low dimensional space. This is achieved by decomposing the matri-
ces representing each of the L different omic matrices Mi with
i ¼ 1; . . . ; L, each of size ni �m (where m is the number of samples



Table 1
Summary of multi-omic data integration methods.

Method Family Core methodology Optimization objective Limitations

SNF Graph Iterative consensus algorithm Similarity matrix Same examples required
MultiSpC Graph Spectral clustering Cluster quality scores Same examples required
NEMO Graph Spectral clustering Cluster quality scores Euclidean distance metric
PIN-SPlus Graph Clustering Connectivity matrix User dependent
JIVE Dimensionality reduction Matrix factorization Min residuals Linearity assumption
RGCCA Dimensionality reduction Matrix factorization Max correlation Linearity assumption
tICA Dimensionality reduction Matrix factorization Max correlation Latent variables independence
MOFA Dimensionality reduction Matrix factorization Max evidence lower bound Linearity assumption
MSFA Dimensionality reduction Matrix factorization Max evidence lower bound Normality assumption
intNMF Dimensionality reduction Matrix factorization Min distance Linearity assumption
MCIA Dimensionality reduction Matrix factorization Max covariance Linearity assumption
iCluster Statistical K-means Min variance Linearity assumption
PARADIGM Statistical Hierarchical clustering Max centroid distance Known pathways only
LRAcluster Statistical K-means Min variance Linearity assumption
CCA Neural Multi Layer Perceptron Max uncorrelation Uncorrelation of embeddings
Split-AE Neural Auto Encoder Min reconstruction error Infinite equivalent latent spaces
DCCAE Neural Auto Encoder Min reconstruction error Infinite equivalent latent spaces
NGL-F Neural Multi Layer Perceptron Min reconstruction error Euclidean distance metric
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and ni the number of features) into the product of a ki �m factor
matrix (F) and ni � ki omics-specific weight/projection matrices
(Ai).

There are many methods based on different mathematical for-
mulations. Here are the most representative ones:

3.1. JIVE

Joint and Individual Variation Explained (JIVE) [55] is an exten-
sion of the Principal Component Analysis (PCA) [56–59] to multi-
omics data. PCA seeks to describe the data with a reduced number
of meta-features obtained by linear combination under the condi-
tion that the new meta-features are orthogonal and variance is
maximized. JIVE decomposes each omic matrix into a joint factor
matrix U, an omic-specific factor matrix A and residual noise E:
Xi ¼ UiSþ Ai þ Ei for i ¼ 1; . . . ; L. S is the score matrix explaining

variability across multiple types of data. Ei;Ai and Ui are (n x k)

matrices. The objective function jjEjj2 is minimized with E =
½E1; . . . ; EL�T .

3.2. RGCCA

Regularized Generalized Canonical Correlation Analysis
(RGCCA) [60] is a generalization to multi-omics data of the Canon-
ical Correlation Analysis (CCA) [61,62], a method looking for a lin-
ear combination of two matrices with the greatest correlation.
RGCCA determines a factorization of the same form as JIVE but
maximizes the correlation between omic specific factors by finding
projection vectors ui such that the correlation between projected
data is maximized: argmax

i;j
ðCorrðXiui;Xj;ujÞÞ for all i; j ¼ 1; . . . ; L.

3.3. tICA

Tensorial Independent Component Analysis (tICA) [63] is an
extension of tensor-based dimensionality reduction methods. In
particular, it aims to overcome the limitation of such methods to
share both samples and features. It starts from the correlation
matrix, whose rows and columns are the samples common to all
omics, while its elements (i,j) yield the correlation of sample i with
sample j. Then, tICA solves the following equation:

X ¼ S�L
i¼1

Xi ð1Þ

where X represents the multi-omics data organized into a tensor ; S
is a tensor with the same dimension of X, composed of S1; . . . ; SL
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mutually statistically independent random variables with E
[S1; . . . ; SL] = 0 and Var[S1; . . . ; SL] = 1 ; and � represents the tensor
contraction operation. Since tICA searches for independent signals,
the deconvolution of complex mixtures is improved; thus, it better
identifies biological functions and pathways underlying the multi-
omics data.
3.4. MOFA

Multi-Omics Factor Analysis (MOFA)[64] is an extension of fac-
tor analysis, which solves a joint latent variable model composed
of a system of equations of the form Mi ¼ AiF þ Ei , for
i ¼ 1; . . . ; L. Here, F represents the latent matrix variable, Ai is the
omic-specific weight matrix, and Ei is an error term. A prior distri-
bution is placed on all unobserved variables: a standard normal
prior is used for the factors Z, while sparsity priors are used for
the weight matrices; finally, various noise models are supported
for the error term. The model is then solved by maximising the evi-
dence lower bound (ELBO).
3.5. MSFA

Multi-Study Factor Analysis (MSFA) [65] is a generalization of
factor analysis by means of modelling the omic matrices through
the following sum: Xi ¼ UFi þKi þ Ei for i ¼ 1; . . . ; L, where omic
specific factors are multivariate normal.
3.6. intNMF

Integrative NMF (intNMF) [66] is an approach based on Non-
negative Matrix Factorization, where a matrix A is factorized into
two matrices under the assumption that all three matrices are
non-negative. The matrix from each omic Xi is factorized into the
product of a common factor matrix W and a non-negative, omic-
specific matrix Hi, by minimizing the objective function Q =
minWH

PP
i¼1HijjXi �WHijj. Once the W and Hi matrices have been

computed, samples are assigned to the cluster in which they have
the highest weight according to W.
3.7. MCIA

Multiple Co-Inertia Analysis (MCIA) [67] is an extension of Co-
Inertia analysis (CIA) to more than two omics. MCIA factorizes each
matrix into omic-specific factors Xi ¼ AiFi þ Ei for i ¼ 1; . . . ; L, by
separately applying the PCA to each omic matrix Xi and then max-
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imizing the sum of the squared covariance between the scores of
each factor, which corresponds to the global PCA projection:

argmaxq11 ...q
p
1

XL
k1

cov2ðXi
kq

i
k;X

i; qiÞwithqi ð2Þ
3.8. Scikit-fusion

Matrix tri-factorization (aka scikit-fusion) [68] computes a
matrix R (say relation matrix), which encodes the relations inferred
between features of different omics, and a matrix C (say constraint
matrix), which links features of the same omic. Then, it factorizes
all the R matrices by applying matrix tri-factorization under the
constraints given by C. R and C matrices are block-matrices, with
element Ri containing a relation between the elements of the i-th
omic and those of the j-th; in this sense, the matrix tri-
factorization is applied separately to each block.

4. Statistical based

Statistical methods are some of the most common and widely
used clustering algorithms for multi-omics data integration. The
adoption of probability distributions to model variable factors or
the underlying data generation process is the distinguishing factor
of statistical approaches [69].

The success of statistical-based methodologies is mainly due to
their intrinsic interpretability and straightforward implementa-
tion. The possibility of incorporating biological knowledge in
model architectures makes these approaches interpretable by
design [70]. As interpretability is often a mandatory requirement
in many research areas and especially in biology and healthcare,
statistical-based techniques have been successfully adopted for
multi-omics data integration [43].

If their elementary structure and the possibility of choosing
prior distributions are the main reasons for their success, they
are also the main limitations of statistical methods [71]. Indeed,
these approaches heavily depend on the right choice of both vari-
able factors and prior distributions to converge properly. When
prior domain knowledge is scarce or the underlying biological pro-
cess is highly complex, the correct design and statistical models
might be challenging. In the following, some of the most relevant
statistical-based methods are presented.

4.1. iCluster

Integrative Clustering (iCluster) [72–74] is a statistical-based
method for dimensionality reduction. iCluster assumes the observ-
able data distribution is generated from a fixed linear combination
of latent factors. Compared to other dimensionality reduction tech-
niques, iCluster explicitly considers a normally distributed noise
matrix as an additional element in the model, accounting for all
unobservable and uncertainty factors. Both the expectation–maxi
mization algorithm [75] and Bayesian optimization procedures
[76] have been used to optimize the model parameters. Finally, a
k-means clustering [77] is performed over the estimated lower-
dimensional representation.

4.2. Paradigm

PAthway Recognition Algorithm using Data Integration on
Genomic Models (PARADIGM2) [78] is a statistical-based algorithm
for the analysis of cellular processes through the integration of mul-
tiple data sources. PARADIGM integrates the information coming
2 http://paradigm.five3genomics.com/
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from different omics through factor graphs representing known bio-
logical pathways [79]. For each biological entity in the factor graph,
PARADIGM provides an estimate of each patient activity. The activity
scores are used to find the final clusters using hierarchical clustering
with centroid linkage [80]. The state of non-measured biological
entities in the factor graph is estimated using the expectation–maxi
mization algorithm [75].

4.3. LRAcluster

Low-Rank Approximation based multi-omics data clustering
LRAcluster [81,82] is a probabilistic approach for dimensionality
reduction. The methodology was originally developed to integrate
four high-dimensional omic data for the identification of different
cancer subtypes. LRAcluster aims at estimating a low-rank
ultrahigh-dimensional parameter matrix H in order to extract a
common low-dimensional subspace for all the omics. The maxi-
mum rank of H depends on a user-defined parameter r. Once H
is estimated, LRAcluster computes the singular value decomposi-
tion of H ¼ VRVT [83]. The common low-dimensional subspace
corresponds to the first r columns of RVT . The final clusters are
estimated, on the reduced subspace, using k-means [84], whose
number of clusters k is evaluated employing Silhouette values [85].

4.4. Fuzzy integration

One of the most substantial assumptions behind multi-omics
data integration is that the information is consistent across multi-
ple data sources. Several statistical-based techniques [86–88] have
been proposed to relax this assumption, providing multiple clus-
tering labels for each sample so that samples are allowed to be
grouped in different clusters for different omics. To this aim, each
omic variable’s contribution to the final clusters is treated as a ran-
dom variable itself, whose prior is described using a Dirichlet pro-
cess [89].

5. Neural Networks based

In the very last years, neural networks and, more specifically,
deep neural networks have been applied in the context of data
fusion due to the incredible success they have obtained in the
single-omic learning tasks [90]. Neural networks are particularly
suitable for this application. First of all, as a parametric method,
they do not require training data at test time. Secondly, they can
deal with both structured data, like gene or protein expressions
[91], and unstructured data, such as medical images [92,93]. Fur-
thermore, they are thought to be trained and process a large
amount of heterogeneous and noisy data [94]. All the above has
paved the way to deep neural network adoption in bioinformatics
[95], e.g. for transcription factor binding sites prediction [96–99] or
DNA/RNA motif mining [100–103]. However, since lots of training
data are not always available, particularly in the medical field, this
is also the main weakness of this type of algorithm [104,105].
Finally, in the medical/biological context, the data fusion task has
also been referred to as multi-view learning [106]. The difference
between the two terms is that while the first only refers to combin-
ing the information coming from different data types, the second
always includes their employment in a unique supervised/unsu-
pervised learning task.

In the following, we will refer to tasks where only two inputs
(X;Y) are given, but all of the reported methods can be extended
to the case of many inputs.

Deep architectures Different types of deep architecture are gen-
erally available for unsupervised learning. In the field of multi-
view learning, the most commonly used architectures are feedfor-
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ward neural networks and Auto-Encoders (AE) [107,106]. Neural
networks are either trained to maximize the Canonical Correlation
[108] or Clustering indices [109].

5.1. Deep-CCA (DCCA)

The Canonical Correlation Analysis (CCA) and kernel variants
[110,111] have been extensively employed in the field of multi-
view feature learning and dimensionality reduction [112,113].
CCA allows learning an embedding in which features are maxi-
mally uncorrelated. Feature correlation can be calculated by deal-
ing with the features learned either from each view or among
views. Imposing uncorrelation among views allows learning com-
plementary features from each view. Many works attempted to
learn a CCA-like neural network model [110] but only in [114] a
full DNN extension has been proposed, named Deep CCA (DCCA).
In DCCA, two deep neural networks f and g are learned to extract
a single non-linear representation from each input view. Then,
the canonical correlation among the extracted feature representa-
tions f ðXÞ and gðYÞ is maximized:

f ; g :¼ max
Wf ;Wg ;U;V

1
N trðUTf ðXÞgðYÞTVÞ

s:t: UTð1N f ðXÞf ðXÞT þ rxIÞU ¼ I;

VTð1N gðYÞgðYÞT þ ryIÞV ¼ I;

uT
i f ðXÞgðYÞTv j ¼ 0; for i – j;

ð3Þ

where W is the set of learnable weights of each neural network, trðÞ
is the trace function, U and V are the CCA eigenvectors that project
the encoding of each network, rx;y is the regularization parameter,
and N is the number of training examples. From a theoretical per-
spective, the DCCA objective cannot be directly optimized since it
needs to be calculated over all the input samples. However, stochas-
tic gradient descent (SGD) methods may still be employed, as
reported in [115], provided that the mini-batch on which gradients
are estimated are sufficiently large and representative of all the
population. At last, as shown in [106], DCCA may also work when
only one input source is available at test time, with UTf ðÞ being
the projection used for testing.

5.2. Split Auto-Encoders (Split-AE)

AutoEncoders (AEs) [116,117] are generally trained to find a
compact representation of the input data that best allows their
reconstruction. AEs are composed of two fully connected neural
networks: the first one EðxÞ (generally referred to as encoder) maps
the input data x into a compact latent space. This representation is
given as input to another network D EðxÞð Þ (also called decoder),
which projects it back to the original input space. Both networks
are trained in such a way that the reconstructed data x̂ ¼ DðEðxÞÞ
is as close as possible to the original data x. Therefore, the trained
encoder EðxÞ projects input data into a reduced space by maximally
preserving relevant information (as recently demonstrated in
[118]). Split-AutoEncoders [107] (Split-AEs) shift this idea to the
multi-view domain. An AE is created for each view with each enco-
der projecting the input domain to a common latent space and
each decoder projecting the data back to the starting input space.
Fig. 1. Visualization of the learnt representations in the task of reconstructing
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All AEs, however, share a common latent space: each decoding
function D receives as input the output of all the encoding function
E. Taking into consideration again the previous two-view example,
the error function for a Split-AE is as follow:

Ex;y;Dx;y :¼ min
WE ;WD

XN
i¼1

jjxi � DxðExðxiÞ; EyðyiÞÞjj2

þ jjyi � DyðExðxiÞ; EyðyiÞÞjj2; ð4Þ
where x; y correspond to the features of the same sample in each
input space, Ex;Dx; Ey;Dy are, respectively, the encoders and deco-
ders for the first and second view, and N is the number of training
data. The encoding of each view is concatenated in order to create a
shared representation. For instance, in [107] Split-AEs are used to
combine audio and visual information. More precisely, they train
a Split-AE to reconstruct videos of people pronouncing certain
words (e.g. digits) when also the corresponding audio is available.
In Fig. 1 the learnt representations in terms of the most strongly
correlated input features in both domains are reported for two sam-
ples. Also in this case, Split-AE works even if only one input view is
available at test time: a single encoder may be used to represent all
the sufficient information to reconstruct input data in all views. At
last SGD, or other gradient-based method, may be employed to
optimize Eq. 4, weighing more some of the terms according to the
final goal.

5.3. Deep canonically correlated autoencoders (DCCAE)

Inspired by previous works [114,107], Deep canonically corre-
lated autoencoders (DCCAE) [106] combines the maximization of
the canonical correlation among the representations extracted
from each view with a reconstruction error of SplitAE. More pre-
cisely, DCCAE employs the same structure as in [107] and adds
to the autoencoder optimization problem a CCA regularization
term on the learned representations:

Ex;y;Dx;y :¼ max
WE ;WD ;U;V

XN
i¼1

jjxi � DxðExðxiÞ; EyðyiÞÞjj2

þjjyi � DyðExðxiÞ; EyðyiÞÞjj2
�k 1

N trðUTExðXÞEyðYÞTVÞþ
s:t: sameconstraintsasin3

ð5Þ

where k is a weight parameter, which balances the contribute of the
CCA in the overall optimization. From the information theory point
of view [119], by minimizing the reconstruction error, the autoen-
coder maximizes the mutual information between the inputs and
their projections into the common latent space [120], while the
CCA maximizes the mutual information between the view projec-
tions [121]. The DCCAE loss function aims at finding the equilibrium
between the information captured in the input-projection mapping
within each view and the information collected in the projections
among views.

5.4. Neural Graph Learning for data-Fusion (NGL-F) neural network

The Neural Graph Learning for data Fusion (NGL-F) is a
gradient-based clustering neural network [109,122], which uncov-
ers topological sample-to-sample relationships using multiple data
videos and audio of people pronouncing words. Image taken from [107].
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sources. The output of NGL-F is a set of graphs. For each input set,
NGL-F aims at finding a graph where nodes represent cluster cen-
troids while edges represent cluster topological properties. The
learned topology described by such graphs is used to create the
sample adjacency matrix (S). The information contained in the
matrix represents all datasets.

NGL-F is composed of a set of dual multi-layer perceptrons
(MLPs) [109], one for each dataset. Unlike other previous works,
however, each network works on the transpose of the input matrix
[122], which allows employing many hidden layers, preserving, at
the same time, data topology. For instance, by working on the
transpose of the data matrix, the input space is maintained through
the network layers. Each MLP provides as output a set of vectors
wi 2 Rd representing cluster centroids for the input data. The archi-
tecture of each network can be customized according to the com-
plexity of its own dataset.

The loss function of NGL-F takes into account, at the same time,
the quality of clusters found by each MLP and their underlying
topology. The relationships among clusters are modeled using an
adjacency matrix E, where Eði; jÞ represents the number of samples
for which wi and wj are the two closest centroids. The higher Eði; jÞ,
the more their respective clusters are related. The loss function for
each view is composed of three terms taking into account inter-
and intra-cluster distances, quantization error, and parsimony in
representing the underlying topology:

Lz ¼
max

k
dintraðCkÞ

max
i;j

dinterðCi;CjÞ þ Q þ jjEjj ð6Þ

where dintraðCkÞ is the intra-cluster distance, dinterðCi; CjÞ the inter-
cluster distance, and Q the quantization error. The NGL-F loss func-
tion is the linear combination of the loss function in the different
views: L ¼PzLz.

Once all networks terminate the training procedure, the result-
ing clusters are analyzed. For each input set, two samples are con-
sidered near each other if they belong to the same cluster, far from
each other, if they belong to different clusters. A sample adjacency
matrix S is then computed as follow: Sði; jÞ ¼Pn

d¼1neardði; jÞ, where
neardði; jÞ is a boolean function calculating the proximity of the
samples as previously explained and n is the number of datasets
taken into consideration. This matrix is the result of the fusion
process.
6. Benchmarks for performance evaluation and comparison

The multi-omics paradigm has been investigated to assess the
clustering capabilities of state-of-the-art techniques. To this pur-
pose, eight methods have been selected, and their performance
compared on standard quality indices. Two datasets have been
employed as benchmarks, one synthetic and the other biological.

Two datasets have been employed as benchmarks, one syn-
thetic and the other biological. The synthetic dataset has been cho-
sen to control specific conditions in the data (e.g., the number and
the density of the clusters and the number of samples). Data in the
synthetic dataset are very well clustered. Thus, this dataset is ideal
for testing the tool performances in a controlled condition but does
not fully represent the biological variation in the data. Therefore, a
biological dataset has been employed, which by contrast is not
controllable in terms of parameters, but it represents the typical
multi-omics dataset.

In the synthetic dataset, three omics have been generated in R
using the InterSIM package [123]: the mRNA raw count gene
expression values (131 features), the methylation values (367
499
attributes), and the relative protein expressions (165 variables).
Each omic is composed of 500 samples, grouped in five clusters.

The biological dataset has been downloaded from the NIH
Genomic Data Commons portal [124]. The dataset is composed of
two omics: mRNA and miRNA transcriptome profiling matrices of
lung samples. The former is composed of raw counts gene expres-
sion values (17683 features) [125]; higher values correlate with a
higher protein production rate. The second omic consists of raw
counts of miRNA values (1665 features) [126]; higher values indi-
cate a reduction in mRNA-translated protein as miRNA inhibits
mRNA translation. Both datasets consist of 1250 samples extracted
from either cancerous or healthy lung tissues. The data have been
collected from four different projects: TCGA-LUAD [127] and
CPTAC-3, with samples from Lung Adenocarcinoma (LUAD)
patients; TCGA-LUSC, with samples from Lung Squamous cells Car-
cinoma (LUSC); and TCGA-MESO from Mesothelial neoplasm
(MESO). Usually, healthy samples have been taken from non-
tumoral tissues adjacent to the tumor. From the above metadata,
seven different labels have been generated to check the quality
of the clusters predicted by each method:

� TCGA-LUAD_healthy
� TCGA-LUAD_tumoral
� TCGA-LUSC_healthy
� TCGA-LUSC_tumoral
� CPTAC-3_healthy
� CPTAC-3_tumoral
� TCGA-MESO_tumoral

Table 2 reports the eight clustering algorithms compared in
the experiments. Only techniques with publicly available soft-
ware and clear documentation were selected. The first two algo-
rithms, SNF and MultiSpC, belong to the graph-based group
described in Section 2. Among the dimensionality reduction
methods (see Section 3), JIVE, RGCCA, tICA, MOFA were selected.
Finally, the iCluster and NGL-F techniques were tested for the
statistical (Section 4) and and neural network (Section 5) cate-
gories, respectively.

6.1. Quality indices

In order to compare clustering algorithms, we selected a set of
metrics that are not directly related to a specific biological problem
inorder toprovidea fair comparisonamongthedifferent techniques.

The first index used for assessing the clustering performances is
the Peak Signal-to-Noise Ratio (PSNR) [130], which is one of the
most famous and widely used measures of the fidelity of a repre-
sentation (i.e., a clustering) w.r.t. the original signal. The PSNR is
defined as:

PSNR ¼ 10log10
MAX2

l

MSE

 !
ð7Þ

whereMAX2
l is the squared Euclidean norm of the vector connecting

the two most distant samples in the input distribution, and MSE is
the mean squared error between each centroid weight vector and
its associated data. The higher the PSNR value, the better the
clustering.

PSNR measures only the intra-cluster compactness, but it does
not take into account the inter-cluster separation. To this end,
the Davies-Bouldin index (DB) [131] has been employed as it con-
siders both aspects:

DB ¼ 1
N

XN
i¼0

max
j–i

RMSEi þ RMSEj

Di;j
ð8Þ



Table 2
Summary of the methods selected for benchmark comparison.

Method Type Source Reference

SNF Graph based https://cran.r-project.org/web/ packages/SNFtool/index.html [128]

MultiSpC Graph based https://it.mathworks.com/help/stats/spectralcluster.html [50]

JIVE Dimensionality reduction
based

https://cran.r-project.org/web/ packages/r.jive/index.html [55]

RGCCA Dimensionality reduction
based

https://cran.r-project.org/web/ packages/RGCCA/index.html [60]

tICA Dimensionality reduction
based

https://cran.r-project.org/web/ packages/tensorBSS/index.html [63]

MOFA Dimensionality reduction
based

https://www.bioconductor.org/ packages/release/bioc/html/MOFA.html [64]

iCluster Statistical based https://cran.r-project.org/web/ packages/iCluster/index.html [72]

NGL-F Neural network based https://github.com/ pietrobarbiero/cola/blob/ 82f05f639bb14bdb3e65a0008f9447 ffc88bb204/fexin/_fexin.
py

[122,129]
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where RMSEi is the Root Mean Squared Error [132] for the ith cluster
Di;j is the Euclidean distance between the ith and jth cluster cen-
troids, and N is the number of clusters. Lower DB values indicate
better clustering.

The third quality measure used in the experiments is the cluster
Silhouette value (S) [85]. As the DB index, it considers both the
inter-cluster and intra-cluster distances and is defined as:

S ¼ 1
C

XC
i¼1

bðiÞ � aðiÞ
maxðaðiÞ; bðiÞÞ ð9Þ

where aðiÞ is the average distance of the ith sample from the sam-
ples in the same cluster, bðiÞ is the minimum among the mean dis-
tances of the ith sample from the samples in the other clusters, and
C is the cardinality of the current dataset. While DB checks com-
pactness and cluster separation, the S index estimates if, on average,
samples are correctly assigned to the nearest neighbouring cluster
[130]. Because of Eq. 9, S 2 ½�1;1�, where a high value indicates a
good clustering.

The last metric used in the experiments was the harmonic mean
(PE) between cluster efficiency and purity [130]. The two metrics
were computed, averaging their scores obtained for each predicted
cluster and for each ground-truth label. The efficiency is the ratio
between the number of samples with the same ground-truth label
i in the same cluster over the overall number of samples labeled as
i. The purity is the ratio between the number of samples with the
most common ground-truth label j in the same cluster over the
overall number of samples of the cluster.

The selected metrics have been chosen primarily because they
are among the most used to assess clustering algorithms and also
because they are complementary to each other. In fact, they can
be used to efficiently summarize a wide range of information such
as: the amount of information retained by cluster centroids (PNSR),
clusters’ compactness (DB), distance among different clusters (DB),
closeness to the nearest centroid (Silhouette), the class-
homogeneity of clusters (purity, PE), and the scattering of samples
of the same class across different clusters (efficiency, PE).

6.2. Synthetic dataset

The first benchmark deals with data drawn from the 500 sam-
ples synthetic dataset. The output matrix of each of the eight algo-
rithms has been clustered using k-means [84] with a number of
target centroids equal to the number of expected clusters, i.e., five,
to perform a fair comparison.

The PSNR has been computed for the output matrix of each omic
(see Fig. 2a) in order to evaluate the amount of information
retained by cluster centroids. The two graph-based methods
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behave in opposite ways. The SNF clustering is quite poor
(� 3dB), while MultiSpC performs well (� 25dB). The dimensional-
ity reduction group exhibits a common trend (17� 20dB) with the
exception of JIVE, which has the highest PSNR value (� 42dB)
among all techniques. Statistical and neural-based approaches
show a similar clustering performance (27� 30dB) in identifying
meaningful cluster centroids, slightly higher than MultiSpC but
still much lower than JIVE.

The Davies-Bouldin index has been computed by concatenating
all the three omics (i.e., TS). Fig. 2b illustrate the results in consid-
ering the compactness and the distance between different clusters.
Conversely to the previous metric, six out of eight techniques show
about the same performance (DB ¼ 1:1). SNF obtains a slightly
higher value (DB ¼ 1:8), while MultiSpC clusters are significant
worse (� 13).

Silhouette scores are reported in Fig. 3 for each method and
measures for each sample the closeness to the nearest centroid.
As per the DB, this index has been computed on the concatenated
omics. SNF (see Fig. 3a) groups properly the first and the fourth
clusters (S > 0:6); the third cluster has a lower but still good Sil-
houette score (� 0:4), while SNF was not able to detect the two
remaining groups. According to the Silhouette score, MultiSpC
was not able to identify correctly the clusters, as shown in
Fig. 3b. Dimensionality reduction based approaches performed
better than the previous category. With the exception of tICA
(see Fig. 3f), the other three algorithms - JIVE (Fig. 3c), RGCCA
(Fig. 3d), and MOFA (Fig. 3d), and - obtained a high S score
(� 0:7) for all clusters. Similar results have been obtained by iClus-
ter (see Fig. 3h). Finally, the quality of NGL-F clusters (see Fig. 3i)
was similar, on average, to tICA (� 0:5).

The last comparison for the synthetic dataset has been done by
means of the harmonic mean PE of each cluster purity and effi-
ciency. Fig. 4 shows algorithm performances (colors identify clus-
ters). Six out of eight methods yielded a perfect clustering in
terms of purity and efficiency for all classes. SNF scores were
slightly worse, while MultiSpC clustering quality was the lowest.

In conclusion, it can be stated that JIVE is the best technique, w.
r.t to the proposed metrics, in clustering the synthetic dataset. The
second-best option is iCluster, followed by NGL-F and the remain-
ing dimensionality reduction methods. SNF exhibits a moderate
ability to cluster this benchmark, while the worst performance is
shown by MultiSpC.

6.3. Lung dataset

The second benchmark consisted of data extracted from the NIH
Genomic Data Commons lung dataset. Genes with an expression
value of zero across all the samples were removed from the analy-



Fig. 2. Quality indices for the synthetic dataset: (a) PSNR (the higher the better) and (b) Davies-Bouldin (the lower the better). Each column yields the index value for the
corresponding technique.

Fig. 3. Silhouette index for the synthetic dataset computed for each cluster (Y-axis): graph-based (SNF and MultiSpC), dimensionality reduction based (JIVE, RGCCA, tICA and
MOFA), statistical-based (iCluster) and neural network based (NGL-F). Values close to 1 are related to good clustering, while negative values imply a poor clustering quality.
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sis. The mRNA matrix was normalized using a variance stabilizing
transformation [133]. The miRNA matrix was scaled by taking the
log2ðexprValueþ 1Þ [134] over the normalized values obtained with
the DESeq2 algorithm [135]. The output matrix of each of the eight
algorithms has been clustered using k-means [84] with a number
of target centroids equal to the cardinality of the label set, i.e.,
seven. Then, PSNR, DB, Silhouette and PE indices are computed.
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Their meaning is summarized at the and of subSection 6.1. The
PSNR has been computed between each multi-omics output matrix
and the corresponding k-means closest centroid, see Fig. 5a. The
two graph-based methods obtained opposite results. SNF cluster-
ing was quite poor (� 3dB), while MultiSpC obtained the best
results overall (PSNR ¼ 29dB). The dimensionality reduction group
yielded similar results (� 24dB) with the exception of MOFA,



Fig. 4. PE quality indices for the synthetic dataset. Each bar (the higher the better)
yields the index value for the corresponding technique and cluster (identified by
colors).

3 The notion of intrinsic dimensionality refers to the fact that any low-dimensional
ata space can trivially be turned into a higher-dimensional space by adding
edundant or randomized dimensions, and, in turn, many high-dimensional datasets
an be reduced to lower-dimensional ones without significant information loss.
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whose PSNR (28:8dB) was close to MultiSpC. NGL-F showed a sim-
ilar clustering performance, slightly lower than MOFA (� 26dB).
Finally, iCluster obtained the worst results overall (PSNR ¼ 17dB).

The Davies-Bouldin index has been computed by concatenating
the three omics and the k-means Voronoi sets. Fig. 5b illustrates
the results. The DB score varied significantly among the different
algorithms without coherence within each category. The tICA tech-
nique obtained the lowest score overall (DB ¼ 1:1), followed by
JIVE (DB ¼ 2:5), RGCCA (DB ¼ 4:1), and MOFA (DB ¼ 9). In the
graph-based group SNF clusters obtained a result slightly above
RGCCA (DB ¼ 4:4), while MultiSpC had the worst Davies-Bouldin
score overall (DB ¼ 9:2). The statistical-based algorithm (iCluster)
performance was slightly better (DB ¼ 3:4) than SNF and RGCCA
but worse than JIVE and tICA. Finally, NGL-F score was quite high
(DB ¼ 5).

Fig. 6 illustrates the Silhouette scores for each method. This
index has been computed by concatenating the three omics and
the k-means Voronoi sets. Based on this metric, SNF (see Fig. 6a)
was able to properly identify only the sixth cluster (S � 0:6), while
the remaining ones were not appropriately learned by the tech-
nique. MultiSpC was not able to identify any cluster, as shown in
Fig. 6b. Dimensionality reduction approaches performedmuch bet-
ter than the previous category. Both JIVE (see Fig. 6c) and tICA (see
Fig. 6e) were able to identify the first three clusters. In addition,
JIVE detected the fourth group, while tICA was able to model the
remaining three clusters. RGCCA results were similar to SNF (see
Fig. 6d), while MOFA (see Fig. 6f) was able to detect the third clus-
ter only. The statistical-based approach (shown in Fig. 6g) found
the third and sixth clusters (S > 0:6) and only partially the first
one. Finally, NGL-F obtained a good score only for the sixth
(S � 0:8) and the fifth clusters (S � 0:4), as reported in Fig. 6h.

The last comparison for the lung dataset has been done accord-
ing to the harmonic mean PE of purity and efficiency for each clus-
ter. Fig. 7 shows algorithm performances (colors identify clusters).
SNF obtained a good result for five out of seven clusters (PE > 0:5),
while MultiSpC scores were very low for all groups, with the
exception of the seventh one. Among dimensionality reduction
techniques, JIVE and RGCCA obtained good results for all groups,
while tICA and MOFA received lower scores for some clusters.
Finally, iCluster and NGL-F had a similar clustering performance,
slightly worse than dimensionality reduction methods but better
than graph-based ones.
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The algorithms with the best PSNR, i.e., MultiSpC, MOFA, and
NGL-F, obtained the worst DB score. This result is confirmed by
their silhouettes. DB and S classify the algorithms in a very similar
way, with tICA, JIVE and iCluster among the best techniques and
MOFA and MultiSpC as the worst ones. Finally, according to the
PE ranking, RGCCA looked like the best approach, followed by JIVE
and tICA, while graph-based techniques obtained the worst
performance.

In conclusion, the above results showed how JIVE and tICA were
among the best algorithms in clustering the lung dataset with
regard to the proposed metrics. The second-best option was iClus-
ter, followed by NGL-F and the remaining dimensionality reduction
methods. The lowest scores were obtained by SNF and MultiSpC.
6.4. Discussion

In this section, two experiments have been conducted to com-
pare the quality of some of the most common algorithms for
multi-omics clustering. These techniques were uniformly selected
among the classes identified in Sections 2–5.

Overall, the performance of all the algorithms that explicitly
implemented multi-omics clustering was good. Only MultiSpC
consistently reported lower results in all quality indices on both
datasets. The data fusion step in MultiSpC only consists of the con-
catenation of the input matrices. Sometimes, this straightforward
approach is not sufficient to correctly combine highly different
input datasets, as reported in the experiments. The highest perfor-
mance has been obtained by dimensionality reduction-based
methods (JIVE and MOFA on the synthetic dataset, tICA and JIVE
on the lung dataset).

To get deeper insights on the above analysis, two lung omics
manifolds have been studied to estimate their corresponding
intrinsic dimensionality3.

At first, a linear manifold was assumed, and PCA was used to
obtain a lower-dimensional representation. A cumulative
explained variance greater than 90% was considered as a good indi-
cator for assessing the size of the lower-dimensional subspace. The
number of principal components required to explain the 90% of the
variance (i.e. the intrinsic dimensionality d) was equal to 459 and
494 for mRNA and miRNA datasets, respectively.

The linear analysis was used only to have an initial value for the
intrinsic dimensionality d. From this starting point, a more com-
plex non-linear technique, the Curvilinear Component Analysis
[136,137], was used to refine this estimation. The Curvilinear Com-
ponent Analysis is a self-organizing neural network for data projec-
tion, which maintains the input topology by means of local
distance preservation. In this sense, it can be used to reduce the
number of input variables without altering the shape of the origi-
nal manifold. A fundamental tool associated with this neural tech-
nique is the dx-dy diagram, where the in-between neuron
distances in the projected space (dy) are plotted against their cor-
responding ones in the input space (dx). The projection results for
the miRNA (k ¼ 50; projDim ¼ 80; epochs ¼ 200;a0 ¼ 0:5) and the
mRNA (k ¼ 280; projDim ¼ 100; epochs ¼ 100;a0 ¼ 0:5) omics are
shown in Fig. 8a and Fig. 8b, respectively. Because blue points
are aligned along the bisector, the input topology was preserved
by the projection in both cases. This analysis suggests that the
intrinsic dimensionality of the mRNA and miRNA dataset lies
between 80 and 100, respectively. This can explain why multi-
omics approaches reducing the input dimensionality were able to
properly cluster input data.
d
r
c



Fig. 5. Quality indices for the lung dataset: (a) PSNR (the higher the better) and (b) Davies-Bouldin (the lower the better). Each column yields the index value for the
corresponding technique.

Fig. 6. Silhouette index for the lung dataset computed for each cluster (Y-axis): graph-based (SNF and MultiSpC), dimensionality reduction based (JIVE, RGCCA, tICA and
MOFA), statistical-based (iCluster) and neural network based (NGL-F). Values close to 1 are related to good clustering, while negative values imply a poor clustering quality.
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The dimensions of the input space of the lung dataset, as well as
the dimensionality obtained by applying the methods used for the
experiments, are reported in Table 3. The dimension of the input
space refers to the sum of the dimensions over all the omics. There-
fore, this measure is identical for all the methods and it is � 20000.
All the selected methods allow the user to define a priori the
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dimension of the output space, except for RGCCA and tICA. For
these methods, the output dimension has been set to 10 since this
value has been optimized for the problem at hand [138].

All the reported methods generate a low-dimensional represen-
tation of the data from each omic, except for MultiSpC. RGCCA aims
at maximizing the Canonical Correlation, while tICA optimizes the



Fig. 7. PE quality indices for the lung dataset. Each bar (the higher the better) yields
the index value for the corresponding technique and cluster (identified by colors).
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Independent Correlation and JIVE performs a variant of the PCA.
Both MOFA and iCluster adopt different variants of the Factor Anal-
ysis. SNF does not perform a dimensionality reduction technique
directly, but it exploits the sample similarity matrices, thus work-
ing in the sample space instead of the feature space (the sample
space is usually at least 10 orders of magnitude smaller than the
feature space). NGL-F implicitly performs a projection of the input
data for each omic in the hidden layers, similarly as an encoder.

The choice of the best multi-omics clustering algorithm
depends on data topology. If the clusters are not embedded in
lower-dimensional subspaces, dimensionality reduction-based
Fig. 8. The dy-dx diagrams for miRNA (left) and mRNA (right) omics: blue po

Table 3
Summary of the dimension space before and after applying the selected methods.

Method Type Dimension o

SNF Graph based �
MultiSpC Graph based �

JIVE Dimensionality reduction based �
RGCCA Dimensionality reduction based �
tICA Dimensionality reduction based �
MOFA Dimensionality reduction based �
iCluster Statistical based �
NGL-F Neural network based �
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methods may lose their advantage. Other considerations can be
drawn about the choice of the metrics. As the dimensionality
increases, the difference between points that are close or far disap-
pears [139] (two arbitrary vectors become orthogonal [140]). As a
consequence, all nearest neighbor strategies (like k-means) may
struggle. In this case, a possible solution consists in using fractional
Minkowski distances [139]. All previous considerations are out of
the scope of this survey. This work addresses the taxonomy of
existing algorithms and compares a few representative techniques
on challenging benchmarks, whose dimensionality still allows the
use of Euclidean metrics.

7. Conclusions

This paper aims at providing a general overview of the major
techniques for biological sample clustering, which can be divided
into four groups, according to the underlying approach: graph,
dimensionality reduction, statistics and neural network. The most
meaningful algorithms have been tested, both on a synthetic and
a real biological dataset, and their performance has been compared
using four clustering evaluation scores (PSNR, DB, S and PE).

In both experiments, the dimensionality reduction-based
approach seems to be the best way to tackle multi-omics cluster-
ing. On the contrary, graph-based algorithms are not able to prop-
erly deal with this kind of problem. Finally, statistical and neural
network-based methods have promising performance and may
deserve further improvement. As a further investigation, it would
be interesting to test multi-omics approaches for controlled data-
bases, i.e., changing the topological and statistical properties. This
paradigm would address questions like finding the best method
in the case of non-separable clusters, increasing noise or dimen-
sionality, different inter-distances, so on and so forth. This analysis
will be our future line of research.
ints are the in-between neuron distances, red line indicates the bisector.

f the input space Dimension after applying the selected method

20000 1250
20000 5
20000 400
20000 10
20000 10
20000 1
20000 200
20000 1250
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[68] M. Žitnik, B. Zupan, Data fusion by matrix factorization, IEEE Transactions on
Pattern Analysis and Machine Intelligence 37 (1) (2015) 41–53, https://doi.
org/10.1109/TPAMI.2014.2343973.

[69] W.J. Ewens, G.R. Grant, Statistical methods in bioinformatics: an introduction,
Springer Science & Business Media, 2006.

[70] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine
learning, arXiv preprint arXiv:1702.08608 (2017)..

[71] D.J. Wilkinson, Bayesian methods in bioinformatics and computational
systems biology, Briefings in bioinformatics 8 (2) (2007) 109–116.

[72] R. Shen, A.B. Olshen, M. Ladanyi, Integrative clustering of multiple genomic
data types using a joint latent variable model with application to breast
and lung cancer subtype analysis, Bioinformatics 25 (22) (2009) 2906–
2912.
506
[73] Q. Mo, S. Wang, V.E. Seshan, A.B. Olshen, N. Schultz, C. Sander, R.S. Powers, M.
Ladanyi, R. Shen, Pattern discovery and cancer gene identification in
integrated cancer genomic data, Proceedings of the National Academy of
Sciences 110 (11) (2013) 4245–4250.

[74] Q. Mo, R. Shen, C. Guo, M. Vannucci, K.S. Chan, S.G. Hilsenbeck, A fully
bayesian latent variable model for integrative clustering analysis of multi-
type omics data, Biostatistics 19 (1) (2018) 71–86.

[75] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the em algorithm, Journal of the Royal Statistical Society: Series B
(Methodological) 39 (1) (1977) 1–22.

[76] B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas, Taking the human
out of the loop: A review of bayesian optimization, Proceedings of the IEEE
104 (1) (2015) 148–175.

[77] S. Lloyd, Least squares quantization in pcm, IEEE transactions on information
theory 28 (2) (1982) 129–137.

[78] C.J. Vaske, S.C. Benz, J.Z. Sanborn, D. Earl, C. Szeto, J. Zhu, D. Haussler, J.M. Stuart,
Inferenceof patient-specificpathwayactivities frommulti-dimensional cancer
genomics data using paradigm, Bioinformatics 26 (12) (2010) i237–i245.

[79] F.R. Kschischang, B.J. Frey, H.-A. Loeliger, Factor graphs and the sum-product
algorithm, IEEE Transactions on information theory 47 (2) (2001) 498–519.

[80] M.B. Eisen, P.T. Spellman, P.O. Brown, D. Botstein, Cluster analysis and display
of genome-wide expression patterns, Proceedings of the National Academy of
Sciences 95 (25) (1998) 14863–14868.

[81] D. Wu, D. Wang, M.Q. Zhang, J. Gu, Fast dimension reduction and integrative
clustering of multi-omics data using low-rank approximation: application to
cancer molecular classification, BMC genomics 16 (1) (2015) 1022.

[82] Z. Wei, Y. Zhang, W. Weng, J. Chen, H. Cai, Survey and comparative
assessments of computational multi-omics integrative methods with
multiple regulatory networks identifying distinct tumor compositions
across pan-cancer data sets, Briefings in Bioinformatics (2020).

[83] C. Eckart, G. Young, The approximation of one matrix by another of lower
rank, Psychometrika 1 (3) (1936) 211–218.

[84] J. MacQueen, et al., Some methods for classification and analysis of
multivariate observations, in: Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability, Vol. 1, Oakland, CA, USA, 1967, pp.
281–297..

[85] P.J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis, Journal of Computational and Applied
Mathematics (1987), https://doi.org/10.1016/0377-0427(87)90125-7.

[86] P. Kirk, J.E. Griffin, R.S. Savage, Z. Ghahramani, D.L. Wild, Bayesian correlated
clustering to integrate multiple datasets, Bioinformatics 28 (24) (2012) 3290–
3297.

[87] E.F. Lock, D.B. Dunson, Bayesian consensus clustering, Bioinformatics 29 (20)
(2013) 2610–2616.

[88] E. Gabasova, J. Reid, L. Wernisch, Clusternomics: Integrative context-
dependent clustering for heterogeneous datasets, PLoS computational
biology 13 (10) (2017) e1005781.

[89] T.S. Ferguson, A bayesian analysis of some nonparametric problems, The
annals of statistics (1973) 209–230.

[90] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with
neural networks, science 313 (5786) (2006) 504–507.

[91] Y. Chen, Y. Li, R. Narayan, A. Subramanian, X. Xie, Gene expression inference
with deep learning, Bioinformatics 32 (12) (2016) 1832–1839.

[92] X. Liu, L. Song, S. Liu, Y. Zhang, A review of deep-learning-based medical
image segmentation methods, Sustainability 13 (3) (2021) 1224.

[93] M.P. McBee, O.A. Awan, A.T. Colucci, C.W. Ghobadi, N. Kadom, A.P. Kansagra,
S. Tridandapani, W.F. Auffermann, Deep learning in radiology, Academic
radiology 25 (11) (2018) 1472–1480.

[94] S. Sukhbaatar, R. Fergus, Learning from noisy labels with deep neural
networks, arXiv preprint arXiv:1406.2080 2 (3) (2014) 4..

[95] S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics, Briefings in
bioinformatics 18 (5) (2017) 851–869.

[96] Q. Zhang, S. Wang, Z. Chen, Y. He, Q. Liu, D.-S. Huang, Locating transcription
factor binding sites by fully convolutional neural network, Briefings in
Bioinformatics (2021).

[97] S. Wang, Q. Zhang, Z. Shen, Y. He, Z.-H. Chen, J. Li, D.-S. Huang, Predicting
transcription factor binding sites using dna shape features based on shared
hybrid deep learning architecture, Molecular Therapy-Nucleic Acids 24
(2021) 154–163.

[98] A. Trabelsi, M. Chaabane, A. Ben-Hur, Comprehensive evaluation of deep
learning architectures for prediction of dna/rna sequence binding
specificities, Bioinformatics 35 (14) (2019) i269–i277.

[99] Z. Shen, W. Bao, D.-S. Huang, Recurrent neural network for predicting
transcription factor binding sites, Scientific reports 8 (1) (2018) 1–10.

[100] Y. He, Z. Shen, Q. Zhang, S. Wang, D.-S. Huang, A survey on deep learning in
dna/rna motif mining, Briefings in Bioinformatics 22 (4) (2021) bbaa229.

[101] B. Alipanahi, A. Delong, M.T. Weirauch, B.J. Frey, Predicting the sequence
specificities of dna-and rna-binding proteins by deep learning, Nature
biotechnology 33 (8) (2015) 831–838.

[102] J. Zhou, O.G. Troyanskaya, Predicting effects of noncoding variants with deep
learning–based sequence model, Nature methods 12 (10) (2015) 931–934.

[103] D. Quang, X. Xie, Danq: a hybrid convolutional and recurrent deep neural
network for quantifying the function of dna sequences, Nucleic acids research
44 (11) (2016) e107.

[104] M. Lai, Deep learning for medical image segmentation, arXiv preprint
arXiv:1505.02000 (2015)..

https://doi.org/10.1038/nchembio.462.http://www.nature.com/articles/nchembio.462
https://doi.org/10.1038/nchembio.462.http://www.nature.com/articles/nchembio.462
https://doi.org/10.1016/j.inffus.2017.02.007.https://linkinghub.elsevier.com/retrieve/pii/S1566253516302032
https://doi.org/10.1016/j.inffus.2017.02.007.https://linkinghub.elsevier.com/retrieve/pii/S1566253516302032
https://doi.org/10.1016/j.inffus.2017.02.007.https://linkinghub.elsevier.com/retrieve/pii/S1566253516302032
https://doi.org/10.1177/1177932219899051
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0220
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0220
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0220
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0225
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0225
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0225
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0235
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0240
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0245
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0245
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0245
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0245
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0250
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0250
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0255
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0255
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0260
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0260
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0265
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0265
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0270
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0270
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0270
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0275
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0275
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0275
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0280
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0280
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0290
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0290
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0295
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0295
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0300
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0300
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0305
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0305
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0310
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0310
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0310
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0315
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0315
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0315
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0320
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0320
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0320
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0320
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0325
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0325
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0330
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0330
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0330
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0335
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0335
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0335
https://doi.org/10.1109/TPAMI.2014.2343973
https://doi.org/10.1109/TPAMI.2014.2343973
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0345
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0345
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0345
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0355
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0355
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0360
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0360
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0360
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0360
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0365
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0365
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0365
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0365
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0370
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0370
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0370
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0375
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0375
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0375
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0380
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0380
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0380
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0385
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0385
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0390
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0390
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0390
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0395
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0395
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0400
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0400
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0400
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0405
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0405
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0405
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0410
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0410
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0410
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0410
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0415
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0415
https://doi.org/10.1016/0377-0427(87)90125-7
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0430
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0430
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0430
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0435
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0435
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0440
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0440
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0440
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0445
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0445
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0450
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0450
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0455
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0455
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0460
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0460
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0465
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0465
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0465
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0475
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0475
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0480
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0480
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0480
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0485
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0485
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0485
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0485
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0490
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0490
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0490
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0495
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0495
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0500
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0500
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0505
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0505
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0505
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0510
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0510
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0515
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0515
http://refhub.elsevier.com/S0925-2312(21)01806-3/h0515


M. Lovino, V. Randazzo, G. Ciravegna et al. Neurocomputing 488 (2022) 494–508
[105] A.Y.C. Florez, L. Scabora, S. Amer-Yahia, J.F.R. Júnior, Augmentation
techniques for sequential clinical data to improve deep learning prediction
techniques IEEE 33rd International Symposium on Computer-Based Medical
Systems (CBMS), IEEE 2020 (2020) 597–602.

[106] W. Wang, R. Arora, K. Livescu, J. Bilmes, On deep multi-view representation
learning, in: International conference on machine learning, 2015, pp. 1083–
1092.

[107] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning,
in: ICML, 2011..

[108] H. Hotelling, Relations between two sets of variates, in: Breakthroughs in
statistics, Springer, 1992, pp. 162–190..

[109] G. Cirrincione, P. Barbiero, G. Ciravegna, V. Randazzo, Gradient-based
competitive learning: Theory, arXiv preprint arXiv:2009.02799 (2020)..

[110] P.L. Lai, C. Fyfe, Kernel and nonlinear canonical correlation analysis,
International Journal of Neural Systems 10 (05) (2000) 365–377.

[111] S. Akaho, A kernel method for canonical correlation analysis, arXiv preprint
cs/0609071 (2006)..

[112] A. Vinokourov, N. Cristianini, J. Shawe-Taylor, Inferring a semantic
representation of text via cross-language correlation analysis, Advances in
neural information processing systems 15 (2002) 1497–1504.

[113] P. Dhillon, D.P. Foster, L. Ungar, Multi-view learning of word embeddings via
cca, Advances in neural information processing systems 24 (2011) 199–207.

[114] G. Andrew, R. Arora, J. Bilmes, K. Livescu, Deep canonical correlation analysis,
in: International conferenceonmachine learning, PMLR, 2013, pp. 1247–1255..

[115] A. Lu, W. Wang, M. Bansal, K. Gimpel, K. Livescu, Deep multilingual
correlation for improved word embeddings, in, in: Proceedings of the 2015
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2015, pp. 250–
256.

[116] M.A. Kramer, Nonlinear principal component analysis using autoassociative
neural networks, AIChE journal 37 (2) (1991) 233–243.

[117] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Vol. 1, MIT
press Cambridge, 2016.

[118] S. Lee, J. Jo, Information flows of diverse autoencoders, Entropy 23 (7) (2021)
862.

[119] Z. Ghahramani, Information theory, Encyclopedia of, Cognitive Science
(2006).

[120] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, L. Bottou, Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion, Journal of machine learning research 11 (12)
(2010).

[121] M. Borga, Canonical correlation: a tutorial, On line tutorial http://people. imt,
liu. se/magnus/cca 4 (5) (2001).

[122] P. Barbiero, G. Ciravegna, V. Randazzo, E. Pasero, G. Cirrincione, Topological
gradient-based competitive learning, in: 2021 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2021, pp. 1–8.

[123] P. Chalise, R. Raghavan, B.L. Fridley, Intersim: Simulation tool for multiple
integrative ’omic datasets’, Computer methods and programs in biomedicine
128 (2016) 69–74.

[124] National Cancer Institute, Gdc data portal, https://portal.gdc.cancer.gov/, last
accessed on 2020-06-14..

[125] S. Anders, P.T. Pyl, W. Huber, Htseq-a python framework to work with high-
throughput sequencing data, Bioinformatics 31 (2) (2015) 166–169.

[126] A. Chu, G. Robertson, D. Brooks, A.J. Mungall, I. Birol, R. Coope, Y. Ma, S. Jones,
M.A. Marra, Large-scale profiling of micrornas for the cancer genome atlas,
Nucleic acids research 44 (1) (2016) e3.
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