12 research outputs found

    Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films

    Full text link
    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs) on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP) strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.Comment: 25 pages, 11 figure

    Heat meets light on the nanoscale

    Get PDF
    We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. The topics covered range from the basics of the thermodynamics of light emission and absorption, to applications in solar-thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics.Comment: 46 pages, 11 figures; to appear in the special issue of Nanophotonics on 'Smart nanophotonics for renewable energy and sustainability' 201

    Nanophononics: state of the art and perspectives

    Full text link

    Heat meets light on the nanoscale

    No full text
    We discuss the state-of-the-art and remaining challenges in the fundamental understanding and technology development for controlling light-matter interactions in nanophotonic environments in and away from thermal equilibrium. The topics covered range from the basics of the thermodynamics of light emission and absorption to applications in solar thermal energy generation, thermophotovoltaics, optical refrigeration, personalized cooling technologies, development of coherent incandescent light sources, and spinoptics

    Diverging polygon-based modeling (DPBM) of concentrated solar flux distributions

    No full text
    This paper presents an efficient and robust methodology for modeling concentrated solar flux distributions. Compared to ray tracing methods, which provide high accuracy but can be computationally intensive, this approach makes a number of simplifying assumptions in order to reduce complexity by modeling incident and reflected flux as a series of simple geometric diverging polygons, then applying shading and blocking effects. A reduction in processing time (as compared to ray tracing) allows for evaluating and visualizing numerous combinations of engineering and operational variables (easily exceeding 106 unique iterations) to ascertain instantaneous, transient, and annual system performance. The method is demonstrated on a linear Fresnel reflector array and a number of variable iteration examples presented. While some precision is sacrificed for computational speed, flux distributions were compared to ray tracing (SolTrace) and average concentration ratio generally found to agree within ∼3%. This method presents a quick and very flexible coarse adjust method for concentrated solar power (CSP) field design, and can be used to both rapidly gain an understanding of system performance as well as to narrow variable constraint windows for follow-on high accuracy system optimization.United States. Defense Advanced Research Projects Agency (Award DE-AR0000471

    Diverging polygon-based modeling (DPBM) of concentrated solar flux distributions

    No full text
    This paper presents an efficient and robust methodology for modeling concentrated solar flux distributions. Compared to ray tracing methods, which provide high accuracy but can be computationally intensive, this approach makes a number of simplifying assumptions in order to reduce complexity by modeling incident and reflected flux as a series of simple geometric diverging polygons, then applying shading and blocking effects. A reduction in processing time (as compared to ray tracing) allows for evaluating and visualizing numerous combinations of engineering and operational variables (easily exceeding 106 unique iterations) to ascertain instantaneous, transient, and annual system performance. The method is demonstrated on a linear Fresnel reflector array and a number of variable iteration examples presented. While some precision is sacrificed for computational speed, flux distributions were compared to ray tracing (SolTrace) and average concentration ratio generally found to agree within ∼3%. This method presents a quick and very flexible coarse adjust method for concentrated solar power (CSP) field design, and can be used to both rapidly gain an understanding of system performance as well as to narrow variable constraint windows for follow-on high accuracy system optimization.United States. Defense Advanced Research Projects Agency (Award DE-AR0000471
    corecore