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Abstract: We discuss the state-of-the-art and remaining
challenges in the fundamental understanding and tech-
nology development for controlling light-matter interac-
tions in nanophotonic environments in and away from
thermal equilibrium. The topics covered range from the
basics of the thermodynamics of light emission and ab-
sorption to applications in solar thermal energy genera-
tion, thermophotovoltaics, optical refrigeration, personal-
ized cooling technologies, development of coherent incan-
descent light sources, and spinoptics.
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1 Thermodynamics of light and
heat

Control and optimization of energy conversion processes
involving photon absorption and radiation require de-
tailed understanding of thermodynamic properties of ra-
diation as well as its interaction with matter [1-5]. His-
torically, thermodynamic treatment of electromagnetic ra-
diation began over a century ago with Planck applying
the thermodynamic principles established for a gas of ma-
terial particles to an analogous “photon gas” [1]. In par-
ticular, he showed that thermodynamic parameters, such
as the energy, volume, temperature, and pressure can be
applied to electromagnetic radiation, reflecting the dual
wave-particle nature of photons. In this section, we will
review the general thermodynamic principles governing
photon propagation and interaction with matter, as well
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as the evolution of theoretical understanding of these phe-
nomena since original work by Planck [2, 6-16].

1.1 Photon statistics, temperature, and
chemical potential

Photons are gauge bosons for electromagnetism and are
characterized by their energy hw = hc/A and momen-
tum #k, where h = 2mh is the Planck’s constant, c is
the vacuum speed of light, A is the photon wavelength,
w is the angular frequency, and k is the photon wavevec-
tor [17, 18]. Photons can also have angular momentum,
including both spin and orbital components [19-21]. The
former is associated with the circular polarization of the
electromagnetic waves, while the latter originates from
electromagnetic phase gradients. Owing to the weakness
of inelastic photon—photon scattering process, photons
do not exchange energy and thus do not reach thermal
equilibrium among themselves during propagation. To ac-
count for energy conservation in the interactions of pho-
tons with matter, which may lead to the thermalization of
a “photon gas”, the concept of temperature T can be ad-
ditionally introduced. At thermal equilibrium at temper-
ature T, the mean occupation numbers of photons obey
the Bose—Einstein statistics and are defined as N(w, T) =
(exp (hw/kgT) - 1)_1, where kg is the Boltzmann con-
stant. The electromagnetic energy density of radiation in
a material per unit frequency w is defined via the Planck’s
formula as U = fiw - N(w, T) - D(w) [1, 2], while the in-
tensity of thermal radiation from the material surface de-
fined based on the power flow, per unit projected area, per
unit solid angle, per unit frequency, is Iy = vg - U/4m [22]
for isotropic radiation. The parameters D(w) and vg are
the photon density of states (DOS) and group velocity, re-
spectively. In the case of the free-space radiation, the well-
known expressions for these parameters are D = w?/n?c3
and vg = c. The total power radiated from a blackbody sur-
face per unit area (emissive power) can be found by inte-
grating I, over the whole frequency (w) and angular (¢, 6)
ranges: [ = [ [cos 6 - I,dwdQ, where the factor cos 6 ac-
counts for the surface view factor (and is known as the
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Fig. 1. Chemical potential of light. (a, b) Heat flux spectra as a function of wavelength and temperature for pure thermal emitters (1, = 0)
and luminescent emitters with a photon chemical potential 7, = 0.1eV (a) and y, = -0.1eV (b). The emission cut-off energy (defined by
the material bandgap) is 0.11 eV in both cases. (c) Stefan-Boltzmann law for photons emitted with a chemical potential: emissive power as a
function of temperature and chemical potential (i values are shown as labels). The Stefan-Boltzmann law for a blackbody emitter is shown

as a gray dotted line for comparison.

Lambert’s cosine law). For a blackbody source at temper-
ature T emitting into the vacuum, I = oT*, where o is the
Stefan—Boltzmann constant.

In general, the number of photons in a photon gas
is not conserved. However, light emission and absorp-
tion processes involve interactions of photons with other
quasiparticles, such as electrons, plasmons, excitons, po-
laritons, etc., and these interactions obey the conserva-
tion laws for energy, momentum, and angular momentum.
Thus the number of photons created or annihilated during
these interactions cannot always be unrestricted. As a re-
sult, photons may derive not only their temperature, but
also chemical potential [9-11, 23-26] from these interac-
tions. However, the classical form of the Planck’s law is
only applicable to the blackbody radiation generated by
incandescent sources and characterized by a zero photon
chemical potential py = 0. This formalism cannot properly
describe other non-equilibrium absorption—emission pro-
cesses, such as luminescence, lasing, gas discharge, laser
cooling, or Bose—Einstein condensate [27] formation.

The introduction of the concept of the photon chem-
ical potential enables establishing relations between the
number of photons and the number of other quasiparticles
photons interact with. These interactions can be modeled
in analogy with chemical reactions (i.e., equilibrium is
reached when the sum of the chemical potentials, includ-
ing that of photons, is zero). For example, the distribution
of photons emitted at temperature T as a result of recom-
bination of electrons in the conduction band and holes in
the valence band of a semiconductor takes the modified
form Ny(w, T, py) = (exp ((hw - uy)/kpT) - 1)_1, where
My = Me + Up. He and uy, are the chemical potentials of the

electron and holes in the emitter [9, 11, 28-30]. It should
be noted that these chemical potential values can only
be established after charge carriers reach thermal quasi-
equilibrium among themselves within each energy band,
forming the quasi-Fermi energy levels for the electron (Fe)
and hole (F}) distributions in the conduction and valence
bands, respectively, so that py = Fe — Fj,.

The chemical potential of photons can be introduced
by several methods, including photoexcitation, electrical
injection, and parametric coupling [31]. For example, pho-
toexcitation of charge carriers in a semiconductor results
in the formation of the separate quasi-Fermi levels for elec-
trons and holes, and emission of photons carrying posi-
tive chemical potential. This is a typical situation for the
operation of photovoltaic (PV) cells [29, 32] (see section
1.2) and the efficiency enhancement mechanism in ther-
mophotonic cells and up-converters [33-36] (see section
3.2). Upon substituting the modified photon distribution
function into the Planck radiation law, we can observe that
photons with a positive chemical potential carry higher en-
ergy per photon state than thermally emitted photons at
the same emitter temperature. This effect is illustrated in
Figure 1a, which compares photon spectra from sources at
varying temperatures and with varying positive chemical
potential. Another important distinction from the black-
body spectrum is that the spectra of photons emitted with
a chemical potential have a low-energy cut-off, which is
defined by, for example, the electronic bandgap of the
emitter material (Figure 1a). If under the external bias
applied to the emitter material F;, becomes larger than
F., photons with negative chemical potential are emitted,
which carry less energy than the photons in the black-
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body spectrum (Figure 1b). This situation is typical for the
operation of thermoradiative (TR) [37] cells (see section
1.2), hot-electron energy converters [38] and optical recten-
nas [39, 40].

1.2 Photon entropy and light energy
conversion limits

Another important thermodynamic characteristic of light
is photon entropy [2, 3, 9, 26, 41-43]. Understanding the
entropy of photons helps to establish the fundamental
upper limits for the processes involving conversion of
light energy into work and vice versa, including PVs, light
generation, and optical refrigeration [3, 15, 29, 44-49].
For a photon flux with a given photon DOS and a dis-
tribution function N(w), the expression for the entropy
per photon state has the following form: S, = kg -
D(w) [(1+N)In(1 + N) - NInN], which is applicable to
both equilibrium and non-equilibrium cases [2, 6]. At the
thermal equilibrium, the entropy reaches its maximum
and the photon occupation numbers obey Bose—-Einstein
statistics, N = N. The entropy flux leaving the surface
of a blackbody source can be calculated via integration
over photon energy and direction of light propagation,
and equals 4/3 - ¢T3 [2, 6]. This expression deviates from
the conventional definition of the entropy flow for ther-
mal processes driven by heat conduction, Q/T, assum-
ing the heat flow Q is equivalent to the total integrated
photon power flow I = oT*. Figure 2a compares the en-
tropy content (i.e., a ratio of the entropy flux to the power
flux, S/I) of radiation for varying temperatures and chem-
ical potentials with that corresponding to heat conduction
(S/I = T™Y). It can be clearly seen that the entropy con-
tent of blackbody emission is higher than that of heat con-
duction. However, as the chemical potential increases, the
entropy of radiation decreases and tends to zero when the
lasing condition (uy — hw) is reached [9, 28]. The low en-
tropic content of lasers and other coherent sources makes
possible optical refrigeration, that is, anti-Stokes fluores-
cent cooling [50-52], which is discussed in more detail in
section 3.2. Figure 2a also shows that high-temperature
emission is characterized by lower entropy content than
the low-temperature one for any value of the chemical po-
tential of photons.

From the above discussion it follows that depending
on the origin or radiation, light can be either worse (S/I >
T-1) or better (S/I < T7') source of energy to extract
work from, compared to heat conduction. This has impor-
tant consequences in the maximum energy conversion ef-
ficiency achievable in different types of engines, depend-
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ing on whether energy is delivered to and from the engine
via heat conduction or radiation. A schematic of an engine
together with a heat source and a heat sink is shown in Fig-
ure 2b. The heat is delivered to the engine via radiation and
the entropy is transferred to the heat sink via heat conduc-
tion. The engine emits photons back to the environment
at temperature T, which is lower than the temperature of
the heat source T},. We assume that the heat sink is at tem-
perature T = 300 K, and model the sun as a blackbody
emitter with a temperature of T, = 6000 K. The general
expression for the engine efficiency is also shown in Fig-
ure 2b, which depends on the temperatures of individual
elements and on the mechanisms of the energy delivery to
and entropy rejection from the engine.

In particular, if heat is delivered to an engine via black-
body radiation (I,) and the engine rejects entropy to the
environment via blackbody radiation (S,) and heat con-
duction (Ss), the heat can be converted to work at a max-
imum efficiency that is less than the classical Carnot ef-
ficiency limit [53]. This efficiency is known as the Lands-
berg efficiency [3, 44] (Figure 2c, blue dotted line), which
is calculated under the assumptions that the heat source
is the sun and there is no irreversible entropy generation
in the engine (Sg = 0). Landsberg efficiency reaches its
maximum value if T = T, taking a more familiar form:
n;=1-4/3-T-Tp' +1/3-T*. T;". For the sun as the
heat source, n; = 93.3%, representing the upper bound of
the solar energy conversion efficiency. For comparison, the
efficiency of the ideal Carnot engine [53] reaches 95% ef-
ficiency for T, = 6000 K (gray dotted line in Figure 2c).
It has recently been noted that the ultimate efficiency of
photon energy conversion can exceed the Landsberg limit
in the case of a terrestrial heat source, which can absorb
and recycle the heat re-emitted by the engine, yielding
nl' = W/(I, - I) [15]. Landsberg efficiency for terrestrial
sources at different temperatures T} is shown in Figure 2c
as teal lines, which reach the Carnot limit when T = T,
and exceed solar Landsberg efficiency for Tj, = 6000 K and
T>Te..

However, the Landsberg limit can only be approached
in time non-reciprocal systems [26, 54] due to the en-
tropy generation resulting from a local non-equilibrium
between photon absorption and emission rates in the ab-
sorber material [10, 26]. The entropy generated in the pro-
cesses of the photon absorption and thermal re-emission
is S¢ = I - (T -4/3-T;') +1/3 - I - T"! [28, 55].
Accounting for this entropy generation, the solar energy
conversion efficiency in an engine with a blackbody ab-
sorber takes a more general form: n = (1-T*-T;') -
(1-T1- T,’Il) [26, 56], which is plotted as a function of the
engine temperature in Figure 2c (red solid line). This effi-
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Fig. 2. Entropy of light and optical energy conversion limits. (a) The entropy content of light, defined as the ratio of the spectral entropy
flux to the spectral power flux, as a function of the emitter chemical potential and temperature. The corresponding dotted lines for each
temperature denote the entropy content for heat delivered at the same temperature via heat conduction (S/I = T‘1). (b) Schematic of an
energy-conversion device and a general expression for its conversion efficiency. (c) Efficiency limits for ideal engines when heat is delivered
from the source to the engine and from the engine to the environment via conduction, that is, Carnot limit (gray dotted line) or via both
radiation and conduction, that is, Landsberg limit (blue dotted line and teal solid lines). The red solid line shows the limiting efficiency of
the solar thermal energy conversion that accounts for the entropy generation in the processes of photon absorption and emission. (d, e)
Limiting efficiencies (red lines) and irreversible entropy generated in the converter (blue lines) of a PV cell with bandgap E4 = 1.1 eV(d) and
a TR cell with Eg = 0.2 eV at T=500 K (e). (d) Solid lines are for the PV cell at T= 300 K, and dotted lines are for the PV cell at T= 400 K.
Red circles are the points of the maximum power generation in the PV and TR cells. (e) Solid lines are for the TR cell emitting photons of all
frequencies, and the dotted lines are for a TR cell with a near-monochromatic emission at 0.2 eV and a bandwidth of 1075 eV.

ciency reaches its maximum value of 85.3% at T = 2500 K
for a blackbody absorber. However, high efficiencies can
be reached at lower temperatures of the absorber if selec-
tive surfaces are used (see section 2.1).

The entropy generation in photon energy converters
stems from the power mismatch between the incoming ra-
diation and the spontaneous emission of the absorber, and
can be mitigated by allowing more degrees of freedom to
tailor the spontaneous emission. One example is using
the infinite-junction solar cells, where each junction in-
dependently interacts with incoming photons at each fre-
quency [28, 29]. Another approach is using a stack of two
(or more) independently operated PV cells of the same ma-
terial, but different thicknesses [57]. Although not explic-
itly discussed in the original publication [57], this strategy
enables tuning of two independent photon chemical po-

tentials in individual cells to match the incoming radiation
and suppress entropy generation.

To maximize the generated power, engines typically
have to be operated away from their point of the lowest en-
tropy generation. For example, in the engines that convert
solar energy into an electrical current collected at voltage
V (e.g., PV cells), entropy generation is minimized in the
open circuit voltage regime, yet to maximize power output,
the cell needs to operate at a lower voltage (Figure 2d). This
reduces the chemical potential of re-emitted photons (Fig-
ure 2d, red lines), and increases the irreversible entropy
generated in the cell (Figure 2d, blue lines). The inabil-
ity of a PV cell to utilize the photon energy in excess of
the PV cell voltage (together with the loss of the photons
with the energies below the bandgap) results in the lim-
iting efficiency of a single-junction PV cell-known as the
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Shockley—Queisser limit [29, 32]-to deviate significantly
from the maximum efficiency discussed in Figure 2c. It
also results in the PV cells heating, which further reduces
cell efficiency due to increased energy loss through re-
radiation (see Figure 1a, 1c), and forces cell operation at
an even lower voltage to mitigate this loss (dotted lines in
Figure 2d, T = 400 K).

Finally, efficiency of some energy converters, such as
hot-electron cells [38] and TR cells [37] is maximized if
they are operated at a negative voltage to reduce radia-
tive losses at high temperatures. As illustrated in Figure 2e,
TR cells—to which heat is delivered via conduction and the
entropy is rejected via radiation—reach their highest effi-
ciency when operated under large negative voltage, which
minimizes radiation and reduces irreversible entropy gen-
eration in the cell. However, the highest power is gener-
ated under operation at a smaller negative voltage, and is
accompanied by the irreversible entropy production. The
limiting efficiency of a TR cell can be further increased
if it is only capable of emitting near-monochromatic low-
energy radiation (dotted lines in Figure 2e), albeit at the
price of the reduced power generation.

1.3 The role of electron and photon
densities of states and the photon
angular momentum

In addition to temperature and photon chemical poten-
tial, the intensity and spectrum of radiation emitted by an
object can also be modified by manipulating the photon
DOS [14, 58—66]. Furthermore, most materials do not emit
as blackbodies, and an energy-dependent “gray body” fac-
tor typically needs to be introduced to account for intrin-
sic material properties, which can be tailored by material
engineering. For example, for a gray body semiconductor
exhibiting an electronic bandgap and thus emitting pho-
tons carrying chemical potential, the emission rate is typ-
ically calculated via the van Roosbroeck-Shockley equa-
tion: R(w) = D(w) - a(w) - Ny (w, T, uy) [67-69]. This equa-
tion is valid for emitters exhibiting a quasi-thermal equi-
librium within their respective electronic bands, including
excited and ground state electrons, and also for .

It should be noted that the absorptance coefficient
a(w) is the rate of photon absorption under the condition
of detailed balance between the emission and absorption
process, that is, under a certain quasi-equilibrium elec-
tron and hole distributions. As such, unlike the case of the
blackbody emission, a(w) depends not only on the photon
energy and temperature, but also on the rate of the carrier
excitation, for example, photoexcitation or electrical injec-
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tion. This can be shown by calculating the emission rate
by applying Einstein’s theory of spontaneous and stimu-
lated emission, R(w) = D(w) - o(w) - fu (1 - f;), which is
proportional to the product of the absorption rate o(w), the
probability of the excited electron state being occupied f,
and the ground state being unoccupied (1 - f;) [68, 69]. fu
and f, are the Fermi-Dirac distributions of charge carries
in the emitter material. The absorption rate o(w) is calcu-
lated under the condition that the upper state is empty and
the lower state is full, and thus is uniquely defined by the
available charge carrier DOS inside the material and by the
transition selection rules imposed by momentum conser-
vation [68, 69]. Accordingly, the material absorption rate
can be tailored by engineering the electron DOS, for exam-
ple, via electron confinement effects. This can yield highly
spectrally coherent emission spectra from quantum dots
and wells [16, 70-72] as will be discussed in section 2.3.
Furthermore, as the emission rate depends on the rate of
the carrier excitation, a(w) = o(w) « (f; - fu), the emission
spectra can be also manipulated via a combination of in-
creased temperature and either optical pumping or electri-
cal injection [15, 73, 74] (see section 3.2).

Finally, the photon DOS and group velocity can sig-
nificantly deviate from their free space values in struc-
tured photonic environments with a profound effect on
the spectral characteristics of the emitter. The photon DOS
defines the number of states in the momentum space be-
tween k and k + dk per unit volume and solid angle w
that are available for a photon to occupy in 3D space as:
D(kdk = kK2Qdk/ (271)3. DOS as a function of photon
energy is expressed via the photon dispersion relation:
D(w) = Q/ 2n)* - kK*(w) - dk/dw [17, 18, 63]. It can be seen
that high DOS values can be reached for high-momentum
optical states and/or for states with flat dispersion charac-
teristics.

The easiest way to increase the momentum of an op-
tical state, and thus its DOS, is by increasing the refrac-
tive index n. The dispersion relation for an isotropic bulk
material with refractive index has a well-known form [Kk|,
which is shown in Figure 3a for n = 1 (dotted line). The
photon DOS of an isotropic bulk material with index n > 1
for both light polarizations is enhanced compared to vac-
uum, Dp(w) = nPw?/n®c3. The radiative intensity is, in
turn, proportional to n? since radiative transport requires
multiplication with the group velocity of light, ¢/n. This
effect can be utilized to maximize light absorption for PV
applications [22, 66, 75, 76] and to design high-index ra-
diation extractors for fluorescent [51] and thermal [77, 78]
emission. In anisotropic media, photon DOS has a more
complicated expression, taking different values for ordi-
nary and extraordinary rays [79].
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Fig. 3. LDOS engineering with confined optical modes having high
photon momentum. (a) Dispersion characteristics of quantized
multiple-degenerate whispering gallery modes in a 5 micron diam-
eter TiO, microsphere (red dots) and of a surface phonon polariton
mode on a SiC-air interface (solid blue line). (b) LDOS frequency
spectrum on the surface of the microsphere (red solid line) and on
the SiC-air interface (blue solid line). The free space photon disper-
sion and the free-space photon DOS are shown for comparison as
dotted gray lines in (a) and (b), respectively. (c) The absorption effi-
ciency of an 800-nm diameter SiC microsphere (blue solid line) and
of a periodic chain of 10 microspheres (solid red line) as a function
of photon wavelength. The gray lines show the spectral dispersion
of the dielectric permittivity for SiC (Re(€)-solid line, Im(g)-dotted).
The resonant peaks correspond to the excitation of localized sur-
face phonon-polariton modes at ~10-11 micron and of trapped
whispering gallery modes at ~13 micron.

As the photon DOS is inversely proportional to the
light group velocity vg = (dk/ da))fl, trapped or guided
modes with high photon momenta and/or flat dispersion
can have DOS significantly exceeding that of bulk materi-
als [14, 58—66, 80—-82]. As a result, radiative intensity from
photonic structures supporting such states can be reso-
nantly enhanced beyond the n? limit of bulk dielectrics. In
particular, resonant effects associated with the excitation
of surface polariton waves [61, 63, 83, 84] can be used to
strongly modify a material’s absorptance and emittance.

Surface polaritons are electromagnetic surface modes
existing in metals and polar materials, such as silver, gold,
silicon carbide (SiC), and silica (SiO,). Surface phonon
polariton (SPhP) modes result from the hybridization of
photons and transverse optical phonons, while surface
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plasmon polaritons (SPPs) are formed owing to the hy-
bridization of photons and volume plasmons-collective
oscillations of free electrons. Figure 3a shows the disper-
sion characteristic of a SPhP mode on a SiC-air interface.
The flat region of the dispersion curve corresponds to the
excitation of the SPhP at the interface, and is character-
ized by a strong resonant enhancement of the local den-
sity of photon states (LDOS), as shown in Figure 3b [61, 63].
The high longitudinal momentum associated with surface
polariton modes is a manifestation of the angular mo-
mentum of photons involved in the circulating powerflow
along the material interface [85-87]. Although the high-
longitudinal-momentum photon states only exist in the
sub-wavelength region near the interface, they can be uti-
lized to enhance thermal emission provided that the emit-
ter and the extractor (or the absorber) are coupled through
the near field [12, 63, 72, 83, 88—96]. Near-field coupling be-
tween SPP or SPhP modes on multiple material interfaces
also enables engineering photonic metamaterials charac-
terized by hyperbolic photon dispersion, known as hyper-
bolic metamaterials (HMMs) [63, 65, 97-100] HMMs are
highly anisotropic, and the spectral energy density of pho-
tons in HMMs drastically differs from that predicted by
Planck’s blackbody theory. The Stefan—Boltzmann law for
hyperbolic media has been shown to be a quadratic (rather
than fourth order) function of the temperature [79]. HMMs
are also characterized by high photon DOS in broad fre-
quency bands, which can be utilized for engineering solar
absorbers [101, 102] and thermal emitters both in the near
and far field [63, 103, 104] (see section 5.1).

Confined quantized photon states in optical nanos-
tructures can be also used to enhance and tailor energy
extraction via photon emission in both near and far field
regimes. These photon states include guided modes in thin
films [62, 75, 80, 105-107], fibers and nanowires [108—
111], trapped modes and localized polariton modes of
optical micro- and nano-cavities [59, 62, 81, 112-115],
and photonic crystal defect modes [116, 117]. Thermal
emission extraction via engineering photon LDOS in mi-
cro/nanostructures builds upon the obvious parallels with
the electronic DOS engineering in quantum wells, wires,
and dots [62, 105].

Figure 3a shows the dispersion characteristics of high-
momentum whispering gallery modes (WGMs) trapped in
a 5-micron TiO, microsphere (i.e. a thermal dot) by total
internal reflection [112, 118]. WGMs are characterized by a
high angular photon momentum kang = (l(l + 1))1/ 2, de-
fined by the mode quantum number [ [119]. The linear tan-
gential momentum k|| = (I + 1)/r2)1/2 reaches a high
value on the sphere surface. Its role in the generation of the
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high photon LDOS is analogous to the role of the high in-
plane photon momentum of surface polaritons on planar
interfaces. The photon LDOS on the microsphere surface is
shown in Figure 3b as the red line and features sharp peaks
corresponding to the WGM excitations at discrete frequen-
cies. Each WGM has a frequency degeneracy of 21 + 1, due
to several allowed azimuthal momentum quantum num-
bers m = -1,...1 for each angular momentum number
I [112, 118]. This degeneracy-which may be removed in
micro- and nano-cavities of more complex geometries or
due to near-field electromagnetic coupling [114, 120, 121]—-
further increases the LDOS of the high-k WGM states.

Although WGM states exhibit high LDOS, curvature of
a sphere or cylinder results in total internal reflection that
is not as ideal as for planar interfaces. As a result of this
curvature, it is possible for these modes to leak energy into
the far field, thus enabling radiation extraction and exter-
nal coupling. In fact, this very argument can also be ap-
plied in the case of particles supporting localized surface
polariton modes as well. In Figure 3c, we plot the absorp-
tion efficiency for a SiC microsphere, which we calculated
using Mie theory [59, 84] as the ratio of the sphere’s scat-
tering cross-sections to its geometrical cross-section (blue
solid line). The two sharp peaks observed in Figure 3c cor-
respond to the excitation of the localized SPhP modes at
the frequencies within the Restrahlen band of SiC charac-
terized by a negative dielectric permittivity, and trapped
WGMs outside of this band. From the detailed balance
principle, the absorptance spectra in Figure 3c can be used
to calculate the corresponding emittance from the sphere
into the angular element dQ; as g, (w) = ai(w) [59]. The
absorptance and emittance can be further enhanced via
far-field electromagnetic coupling between microspheres
arranged into a square-lattice array with the period on the
order of radiation wavelength (red solid line).

Figure 3c illustrates that individual high-DOS
wavelength-scale absorbers can exhibit absorption cross-
sections that are larger than the corresponding geometri-
cal cross-sections [84, 122], which demonstrates the possi-
bility of emittance that is higher than a blackbody [59] as
well as the possibility for generating spectrally coherent
thermal light. Indeed, thermal emission from wavelength-
scale particles and nanowires [84, 110, 123] is among
the few known examples of far-field radiation exceed-
ing the blackbody limit. The emittance or absorptance of
extended arrays of individual nanoscale emitters, which
is calculated per unit surface area rather than the local-
ized emitters’ surface area, cannot exceed the blackbody
limit [60]. Nevertheless, long-range electromagnetic cou-
pling in such arrays can enable highly localized heating
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via photon absorption, and, by reciprocity, enhanced light
extraction from nanoscale thermal emitters.

It is important to note that DOS modification via
trapped photon states (e.g., WGMs) does not necessar-
ily rely on the excitation of surface modes in the emitter
material, and thus offers more flexibility in their spectral
design. As seen in Figure 3, trapped photons states can
be excited at frequencies much higher than those typi-
cal for SPhP excitation, which offers applications in op-
tical energy conversion schemes, such as thermophoto-
voltaics [62, 105, 124].

2 Heat is the new light:
manipulation and harvesting of
thermal emission

Spontaneous emission, including thermal emission, typ-
ically yields incoherent and unpolarized light. The abil-
ity to control the frequency, spectral coherence and direc-
tionality of thermal and thermally enhanced fluorescent
radiation would be a significant benefit for applications,
including solar energy harvesting, radiative cooling, sens-
ing, and spectroscopy. In this section, we review the state-
of-the art and remaining challenges associated with spec-
trally shaping the spontaneous emission via engineering
of both the electron and photon densities of states. DOS en-
gineering has been successfully used in the past to either
enhance or inhibit light absorption, fluorescence rates,
Raman scattering efficiency, and near-field energy trans-
fer for applications, such as on-chip communications and
sensing [115, 118, 125-132]. However, the broadband nature
of thermal emission and the temperature dependence of
the photon state occupancies make photon DOS engineer-
ing for heat extraction more challenging.

2.1 Selective surfaces for solar thermal
energy generation

The incorporation of spectral selectivity in radiative ab-
sorbers and emitters can benefit many applications, most
notably, in the field of solar thermal energy conversion.
Solar thermal energy converters with blackbody receivers
suffer from re-emission losses at high temperatures [133].
In Figure 4a, we illustrate this challenge by comparing the
spectral photon energy fluxes for AM1.5 [134] solar radi-
ation and thermally emitted infrared (IR) radiation from
a blackbody at high temperatures. Typically, solar ther-
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Fig. 4. The role of spectral and angular selectivity in solar thermal energy conversion. (a) Frequency spectra of terrestrial solar radiation
(AM1.5D, orange) and of thermal radiation of blackbody emitters at varying temperatures. The top inset shows the ideal spectral absorp-
tance/emittance characteristics of the solar receiver surface. (b) The limiting efficiency of solar thermal energy converters with a blackbody
(gray dotted line) and selective (solid lines) absorbers as a function of solar concentration. The engines are assumed to convert thermal
energy at the Carnot efficiency. For spectrally selective absorbers, the transition frequency between high and low emittance levels (labeled
as ratios a/€) is optimized for each concentration ratio. Angularly selective absorber has no spectral selectivity (1/1), yet is only able to
absorb and emit photons in the narrow angular range of +/- 5 degrees from normal. (c) The corresponding equilibrium temperature of the
absorbers with the optimized transition point between high and low emittance levels discussed in (b) as a function of solar concentration.

mal receivers require a high level of solar concentration
to overcome these losses. However, achieving high opti-
cal concentration, for example, by using a large heliostat
field may not only be costly, but also introduces additional
energy losses, which reduce overall system efficiency and
can have negative environmental impact.

To suppress re-emission losses, a receiver with a step-
wise emittance, as shown in the inset to Figure 4a, needs to
be engineered [15, 135-138]. Ideally, such a receiver would
feature a complete absorptance across most of the solar
spectrum, and zero emittance at lower frequencies over-
lapping with the thermal emission spectra. As illustrated
in Figure 4b, even a non-ideal receiver with 90% solar ab-
sorptance and 10% IR emittance can increase the maxi-
mum possible efficiency of the solar energy conversion.
The better functionality is achieved due to the ability to
reach higher receiver temperatures at low solar concentra-
tions (Figure 4c). The values in Figure 4b, c for each so-
lar concentration have been calculated by optimizing the
transitional frequency separating high-absorptance and
low-emittance spectral regions to yield the highest equi-
librium temperature of the receiver. Due to the presence
of atmospheric absorption bands in the solar spectrum,
the equilibrium temperature does not vary smoothly with
the solar concentration, as evidenced by the kinks in Fig-
ure 4c [139].

At this point, it should be mentioned that the receiver
designs presented above with high solar absorptance and
low thermal emittance do not violate the Kirchhoff’s law.
Although the common corollary of the Kirchhoff’s law is

typically assumed to be that a good absorber has to be a
good emitter, and by contrast a poor absorber, a poor emit-
ter, it is important to realize that terrestrial absorbers op-
erate at temperatures much lower than the temperature
of the Sun. Thus these receivers are not in thermal equi-
librium with solar radiation. They, however, obey the gen-
eral form of the Kirchhoff’s law, also known as the prin-
ciple of detailed balance, ¢(w, 6, ¢, T) = a(w, 6, ¢, T),
where €(w, 0, ¢, T) is the directional spectral emittance,
a(w, 0, ¢, T) is the directional spectral absorptance, and
the angles 6, ¢ specify light propagation direction.

Absorbers with angular selectivity can offer even
higher energy conversion efficiencies for solar thermal en-
ergy conversion applications (red solid line in Figure 3b).
Unlike conventional (Lambertian) emitters with isotropic
emission patterns, angular-selective emitters can only ab-
sorb/emit light within a narrow angular range [140]. As
sunlight illuminating the Earth surface is highly colli-
mated, such receivers can still achieve perfect absorptance
of solar energy [141]. To calculate the efficiency shown in
Figure 4b, the angular-selective receiver is assumed to ex-
hibit no spectral selectivity. The combination of both spec-
tral and angular selectivity can yield an even higher ef-
ficiency at low solar concentrations. Angular selectivity
would also benefit a myriad of other applications, includ-
ing solar receivers, thermophotovoltaic (TPV) energy con-
verters, and energy-efficient directional incandescent light
sources.

Spectral and angular selectivity can be achieved by us-
ing external filters or by designing the absorber to emit

Brought to you by | MIT Libraries
Authenticated
Download Date | 10/6/16 7:57 PM



142 —— S.V.Boriskina et al., Heat meets light on the nanoscale

(a) sunlight (b)
\

y

DE GRUYTER OPEN

sunlight (c) Angularly-

( _ selective

' emitter

radiation
at large angles
can still be
reabsorbed

Reflective
cavity with
an aperture

Lambertian emitter

Lambertian emitter

Fig. 5. Possible approaches to realize angular selectivity of a thermal emitter. (a) The emitter is embedded into a reflective cavity with a
narrow-angle aperture for thermal radiation [142-144]. (b) The emitter is covered with an angular-selective filter, which only allows pho-
ton transmission within a narrow angular range. (c) Asymmetrical nanoscale emitters can have high angular selectivity without the use of

external reflective optical elements [148, 150].

selectively in different directions. Several possible ap-
proaches to achieve thermal emission with angular se-
lectivity are illustrated in Figure 5. The first approach
shown in Figure 5a is based on a reflective cavity with
an aperture [142-144]. Thermally emitted photons prop-
agating in the direction close to the normal to the emit-
ter surface escape the cavity through the aperture. How-
ever, photons emitted at larger angles are reflected back
to the emitter and re-absorbed, thus dramatically reduc-
ing thermal emission losses. The aperture also allows sun-
light to illuminate and heat the receiver. Similarly, multi-
layered dielectric Bragg filters with spectrally and angle-
selective properties recently demonstrated by Soljacic and
colleagues (Figure 5b) can also be used to recycle pho-
tons emitted at angles that differ from the chosen direction
of emission [140] or at frequencies outside of a select fre-
quency band [145]. This approach also allows combining
spectral and angular selectivity by designing the filter to
have omnidirectional reflectance within chosen frequency
range(s). The selective filter can also be attached directly
to the emitter surface [137, 146, 147].

Asymmetric nano- and micro-scale objects supporting
localized optical resonances can also exhibit highly non-
isotropic angular emission patterns as illustrated in Fig-
ure 5c¢ for the case of a notched WGM microdisk. Local
perturbations in symmetrical emitters can help to match
the momentum of the high-k trapped modes to the low-k
propagating modes in free space, thus facilitating far-field
extraction of the optical energy. In particular, Boriskina
has previously predicted that localized indentations can
be used to generate highly directional light emission from
WGM microcavities [148, 149], which has been subse-
quently proven experimentally [150].

Finally, long-range electromagnetic coupling effects
in gratings or photonic crystals can provide momentum

matching of propagating photons in free space to high-k
polariton modes supported by metals, doped semiconduc-
tors, or polar dielectrics. This long-range coupling yields
highly directional thermal emission from gratings at select
frequencies corresponding to the excitation of high-LDOS
surface modes [151, 152] Some examples of directional ther-
mal sources based on gratings will be discussed in sec-
tion 2.3. Gratings can also be designed to provide spec-
tral selectivity for light absorption and thermal emission.
This functionality is illustrated in Figure 6a, which shows
calculated absorptance spectra for single- and multiple-
periodic hafnium (Hf) gratings. Hf was chosen for this
demonstration for use in a high temperature solar receiver
as this metal forms a stable native oxide layer, which is
advantageous for high-temperature operation in air rather
than in vacuum, and can also be used to further improve
solar absorption. It can be seen in Figure 6a that the metal
surface spectral selectivity can be improved by pattern-
ing the metal surface, and is tunable by the pattern ge-
ometry and symmetry properties. The emittance of the
patterned surface drops sharply in the long-wavelength
spectral range above 3 micron, which can help prevent
re-emission losses at high temperatures. Other patterned
metal surfaces—including tungsten (W), tantalum (Ta) and
gold (Au)-have been demonstrated to provide similar or
even better spectral selectivity [138, 153, 154].

Despite the good performance of such structures for
creating thermal emission selectivity, the fabrication of
large-scale micro- and nano-scale patterns at the emitter
surface can be a technologically challenging and costly
endeavor. To address this challenge, the development
of spectrally selective emitters with simpler geometries
is highly desirable. One recently proposed approach to
achieve spectral selectivity and suppress thermal emission
is to cover a solar receiver with a layer of transparent sil-
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Fig. 6. Nanophotonic solutions for spectral selectivity of thermal
emittance. (a) Absorptance spectra of a metal (Hf) receiver with a
flat surface (gray line), a periodically modulated surface (blue line),
and a surface with a multi-periodic pattern shown in the inset (red
line). (b) Absorptance/emittance spectra of a multi-layered solar
receiver with a 80-nm amorphous Si as a PV absorber, a silver back
reflector, an absorber-mirror spacer that acts as a Fabry-Perot cav-
ity, and an overlayer made of silica. The spectra are calculated at
different angles to normal and for both s- and p-polarizations. The
top silica layer serves as both an anti-reflection coating for visible
photons and a thermal emitter for IR photons. (c) IR-transparent
visible-opaque fabric (ITVOF) [169]: visible reflectance and IR
transmittance spectra for conventional fabrics (cotton, blue, and
polyester, teal) as well as the optimally designed ITVOF (red). The
inset is a schematic illustrating the ITVOF performance.

ica aerogel. The aerogel provides efficient thermal insula-
tion [155] and helps to reduce the IR emittance of the re-
ceiver, offering a simple planar technological solution to
improve the efficiency of a solar thermal energy converter.
Another possible solution to achieving spectral selectiv-
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ity, which will be discussed in the next section, is to place
thin film emitters on top of optimally designed substrates
or embed them into planar Fabry—Perot optical cavities.
Selective absorbers and emitters designed using this ap-
proach have been successfully demonstrated both theoret-
ically and experimentally [107, 156—159].

2.2 Mesoscale resonant structures for
passive radiative cooling

Unlike solar thermal receivers, PV solar converters need
to operate at low temperatures. However, low-energy pho-
tons cannot be converted to electricity in PV cells; instead,
they contribute to parasitic heating of the device. To alle-
viate this problem and to increase efficiency of PV cells,
it was recently proposed by Shanhui Fan and colleagues
to combine high solar absorption with high thermal emis-
sion in the IR spectral range [160, 161]. Radiative cooling of
PV cells and other devices requires development of nanos-
tructures and materials with drastically different electro-
magnetic response in the visible and IR frequency ranges.
For this application, high absorptance in the visible range
needs to be accompanied by the high emittance in the
IR region. The IR emittance should ideally peak in the
frequency range corresponding to the atmospheric trans-
parency window in 8-13 micron wavelength range [162—
166]. A selective emitter radiating strongly in this range is
thus exposed to the clear sky enabling the use of the outer
space as a very low temperature heat sink. Radiative cool-
ing can be achieved by choosing an optimal combination
of material and optical properties.

This approach to tailor the spectral properties of so-
lar receivers is illustrated in Figure 6b, which shows the
simulated absorptance and emittance spectra of a multi-
layer absorber with an 80-nm thick layer of amorphous
silicon (a-Si) as the active layer for potential PV applica-
tions. The 130-nm silica (SiO,) spacer underneath the a-
Si layer is supported by a gold reflector and thus acts as a
planar Fabry-Perot cavity. Constructive interference of in-
cident and reflected light within this cavity can lead to an
increase in solar absorption. The absorptance in the visi-
ble frequency range drops sharply at the frequency corre-
sponding to the a-Si material bandgap. In turn, radiative
cooling of this structure can be achieved as a result of IR
emittance enhanced by the SPhP mode excitation within
the Restrahlen band of a 700-nm silica layer on top of the
a-Si film, which spectrally overlaps with the atmospheric
transparency window. This layer simultaneously serves as
the transparent anti-reflective coating in the visible range,
which helps to enhance solar absorption in a-Si. In the
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structure reported in Figure 6b, we have numerically opti-
mized the thicknesses of each individual layer to increase
IR emittance and to simultaneously enhance solar absorp-
tion. More complicated photonic crystal structures have
been designed to achieve even higher IR emission for the
PV cell cooling applications [166, 167].

Personalized cooling technology is another example
of an application where optical spectral selectivity can
be beneficial. Conventional personal cooling is typically
achieved through heat conduction and convection. How-
ever, past studies have shown the human body to be a
very efficient emitter of IR radiation [168], which suggests
radiative cooling can also be an effective cooling mecha-
nism. Most conventional fabrics are opaque to IR radia-
tion (see Figure 6¢) and block thermal emission from the
body to the environment. Ideal fabrics for personalized
cooling applications thus need to exhibit spectral selec-
tivity in their transmittance characteristics. They should
enable IR transmission to directly pass through clothing,
thus maximizing radiative cooling, while ensuring that the
fabric is opaque at visible wavelengths. We have recently
demonstrated that resonant electromagnetic effects in mi-
crofibers can provide a basis for the development of a new
wearable technology for personalized cooling [169].

The fabrics with the required spectrally selective
transmittance spectra were designed using a combination
of optimal material composition and structural photonic
engineering. Synthetic polymers that support few vibra-
tional modes were identified as candidate materials to re-
duce intrinsic material absorption in the IR wavelength
range. Individual fibers were designed to be comparable in
size to visible wavelengths to achieve strong light scatter-
ing and thus remain optically opaque to the human eye. At
the same time, they are too thin to support trapped photon
states at IR wavelengths. This reduces the photon LDOS
in microfibers and minimizes the interaction of the fabrics
with IR light, resulting in high transmission in this spectral
range.

As illustrated in Figure 6c, the designed fabrics are in-
deed opaque for the visible light, yet transparent for the IR
thermal radiation emitted by the human body. Compared
to conventional personal cooling technologies, these fab-
rics can provide a fully passive means to cool the human
body regardless of the person’s physical activity level. The
anticipated effect of the new optical-thermal polymer fab-
rics (tailored into a short sleeve shirt and pants) will be the
increase in the body cooling rate by at least 23 W [169]. This
would enable thermally regulated interior environments,
such as offices or homes, to raise the summer HVAC tem-
perature set points from 75 to 79°F, resulting in significant
energy savings [170].
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2.3 Nanophotonic incandescent sources:
coherent, polarized, and twisted
thermal light

Spectral and angular selectivity of radiation is a signature
of the temporal and spatial coherence of the thermal emit-
ter. Many of the above approaches to increase coherence
of the thermally emitted light have been pursued both the-
oretically and experimentally, as illustrated in Figure 7.
Coherent thermal emitters can potentially be used as tun-
able light sources for sensing and spectroscopy, especially
in the far-IR range, where hardly any coherent sources
are available [171]. They can also play an important role
in optical communications and solar and waste heat en-
ergy harvesting, for example, via a TPV energy conver-
sion process [49, 138, 172-174] or optical rectification [39,
40]. The degree of coherence for a radiation source with
a known spectral distribution I(w) can be calculated as
y(1) = f(;” I(w) - exp (-iwT) dw, where T is the time de-
lay between interfering light sources, which is determined
by the optical path difference A as 7 = 24/vg [175-177].
The coherence length is typically defined as the optical
path difference at which the degree of coherence reaches
10%. The coherence length of thermal blackbody radia-
tion scales inversely with temperature of the source and
equals about 0.6 micron for the sunlight [178] and about
4 micron for the radiation from an incandescent emitter at
T ~ 775 K [177]. However, resonant enhancement of pho-
ton and electron DOS in the emitter via a combination of
optical and quantum confinement effects can yield nano-
and micro-scale thermal sources with coherence and po-
larization characteristics of emitted photons deviating sig-
nificantly from blackbody radiation. This is important for
thermal emission manipulation via optical interference, as
only [partially] coherent light exhibits interference phe-
nomena, while completely incoherent light sources con-
tribute additively to the intensity at any point of space.
Furthermore, the temporal and spatial coherence of the
thermal emitter are manifested in the spectral and angu-
lar selectivity of emission, which stem from the position-
momentum and time-energy uncertainty principles, and
can be utilized in the photon energy conversion schemes.

For example, it has been shown by Greffet and others
that planar sources supporting surface polariton modes
yield quasi-monochromatic near-field radiation with the
coherence length larger than the emitted photon wave-
length [179]. Thermal sources with geometries that provide
matching of the high momentum of these surface modes
to the free space radiation may exhibit even longer coher-
ence length than planar near-field emitters made of the
same material [180, 181]. These coherent far-field direc-

Brought to you by | MIT Libraries
Authenticated
Download Date | 10/6/16 7:57 PM



DE GRUYTER OPEN

S. V. Boriskina et al., Heat meets light on the nanoscale = 145

Fig. 7. Nanophotonic realizations of thermal emitters with partial spectral and spatial coherence based on photon and electron confinement
effects. (a) A SiC single nanowire emitter (reproduced with permission from [110], ©NPG), (b) a periodic grating of tungsten nanoribbons
(reproduced with permission from [151], ©0SA), (c) a plasmonic bulls-eye grating (reproduced with permission from [183], ©ONPG), (d) an ar-
ray of nanorod antennas with spatially varying local anisotropy axis (reproduced with permission from [194], ©APS), (e) a periodic photonic
crystal lattice with embedded GaAs quantum wells (reproduced with permission from [71], ©AIP), and (f) a graphene sheet embedded into a
planar Fabry-Perot cavity (reproduced with permission from [200], ©NPG).

tional thermal sources can be shaped as nanowire anten-
nas shown in Figure 7a [110] or planar gratings of either
parallel [151] or concentric [182, 183] grooves as shown in
Figure 7b, 7c. For example, the coherence length of ther-
mal emission from individual Ti/Pt nanowires of 125 nm in
width was experimentally measured to be at least 20 pm at
T = 773 K, which is much larger than expected for a black-
body emitter [177]. Such thermal sources with sizes on the
order or smaller than the wavelength of emitted photons
are especially interesting, as they can exhibit global co-
herence if the coherence length is comparable to or ex-
ceeds the wavelength. In turn, the coherence length of
the near-IR tungsten grating emitter shown in Figure 7b
is measured to be about 106 micron at T = 623 K [151].
This value exceeds the coherence length of the blackbody
emission and is approaching a coherence length of a CO,
laser. Other coherent thermal emitters based on periodic
one-dimensional gratings and two-dimensional photonic
crystals with emission peaks observed in near-to-far-IR fre-
quency range have been demonstrated experimentally by
using metals and polar dielectrics [180, 181, 184-189].
Thermal emission from coherent nanoscale sources
quite often exhibits a significant degree of polariza-
tion [190]. For example, radiation from heated thin
nanowires supporting localized plasmon and polariton
waves is strongly polarized in the direction orthogonal to
the wire [191, 192]. As the polarization direction of emit-

ted light follows the orientation of nanoscale emitters,
thermal emission from nanopatterned surfaces can be tai-
lored by introducing local anisotropy of individual emit-
ters’ orientation. As shown in Figure 7d [181, 193, 194],
local anisotropy can be introduced by gradually rotating
the direction of nanorod antennas patterned on a planar
substrate. It has been shown experimentally by Hasman
and colleagues that thermal radiation emitted by such a
surface exhibits photon momentum characteristics asso-
ciated with the emission from a revolving medium. This
phenomenon is known as the angular Doppler effect [181,
193, 194], and is a manifestation of the spin—orbit inter-
action of emitted light. Spin—orbit interactions are also a
basis for other interesting optical effects, such as photon
analogs of spin-Hall [195-197], Magnus [198], and Corio-
lis [199] effects, which paves the road to many exciting ap-
plications of coherent nanoscale thermal sources in the
emerging field of spinoptics.

Finally, thermal emission can be controlled by simul-
taneous engineering of photon LDOS and electron DOS in
the material. The latter modifies intrinsic absorption char-
acteristics of the material and can be achieved by using
quantum confinement effects, for example, in quantum
wells as shown in Figure 7e [16, 70, 71]. In this structure,
quantum-well intersubband transitions strongly modify
material absorption properties, which-in combination
with photon DOS modification due to a periodic arrange-
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ment of nanoscale emitters—-results in a dramatic narrow-
ing of the spectral and angular range of emitted radiation.
Likewise, monolayer materials, such as graphene demon-
strate unusual electronic and optical properties due to the
electron confinement in the monolayer plane. Embedding
a graphene layer inside a planar optical microcavity as
shown in Figure 7f provides a way to modify graphene
emission characteristics and to achieve highly spectrally
selective thermal emission [200].

The devices shown in Figure 7e, 7f can be pumped
by electrical current injection, which heats up the emitter
due to scattering of injected electrons. If the optical modal
structure of the thermal source inhibits radiation of long-
wavelength photons, the thermal energy accumulates in-
side the emitter in the form of the energy of phonons
and “hot” charge carriers, which leads to the emitter
self-heating. As a result, emitter can reach significantly
higher temperatures under the same input power and ther-
mal management conditions as compared not only to the
blackbody reference, but also to the same material in the
absence of photon confinement effects [16, 70, 200]. Fur-
thermore, at high temperatures, the thermal conductivity
of the suspended graphene is significantly reduced due
to the strong Umklapp phonon—phonon scattering [201],
which also suppresses lateral heat dissipation and leads
to spatial localization of hot electrons. As a result, the ef-
ficiency and brightness of thermal emission is further in-
creased, making possible realization of thermal graphene
sources emitting in the visible range [202].

3 Thermal up- and
down-conversion of photon
energy

Thermal energy storage and recycling inside emitters with
spectral- and angular-selective characteristics can be used
to achieve thermal up- and down-conversion of photon en-
ergy via the process of photon absorption and subsequent
controlled thermal re-emission. This is illustrated in Fig-
ure 8a, b, which schematically show photon absorbers and
thermal emitters with angular- and frequency-selective
surfaces. The absorbed photons are coupled to another
surface via heat conduction and re-emitted in desirable
frequency range. By adjusting the spectral selectivity of
the absorbing and emitting surfaces, either up- or down-
conversion process can theoretically be achieved. Solar
TPV energy conversion platforms effectively make use of
the photon down-conversion process shown in Figure 8a
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Fig. 8. Thermal up- and down-conversion of photon energy. (a, b)
Schematics of thermal down- (a) and up-converters (b) based on
the use of angular- and spectrally selective surfaces for the con-
trol of thermal emission. (c) Conceptual scheme of a solar energy
conversion platform based on a PV cell enhanced by the thermal
up-converter [208]. (d) Theoretically predicted maximum achiev-
able efficiency of the device shown in (c) as a function of the PV cell
electron bandgap.

to convert the broadband solar spectrum to a narrow-
band thermal emission spectrum, which peaks at lower
photon energy tuned to fit the electron bandgap of a PV
cell [138, 146, 203-207]. Thermal up-conversion of photon
energy (Figure 8b) is more challenging, yet could be highly
promising for applications in waste heat harvesting and in
development of tunable photon sources.

3.1 Thermal up-conversion

We have recently predicted [208] that solar-to-electricity
conversion efficiency higher than the conventional
Shockley—Queisser limit for PV cells [32] can be achieved
in a hybrid platform that combines a single-junction so-
lar cell and a thermal up-converter, as illustrated in Fig-
ure 8c. Within such a hybrid scheme, photons with en-
ergies below the bandgap of the PV cell are absorbed
by the up-converter, which heats up and re-emits pho-
tons with higher energies towards the cell. To make this
process possible, both front and back surfaces of the
up-converter must have carefully designed angular- and
frequency-selective emittance characteristics. The front
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surface should provide a perfect absorption of sunlight
across the solar spectrum, and prevent re-emission of
photons at lower frequencies. Additionally, it should re-
duce re-emission of photons with energies overlapping
with the solar spectrum, which requires the surface to ex-
hibit angular as well as spectral selectivity. This can be
achieved, for example, via the use of an external cavity
with an aperture or a selective filter as shown in Figure 5a,
5b. In turn, the emitter surface should only allow emission
of photons with energies above the PV cell bandgap.

The maximum efficiency of a hybrid device utiliz-
ing the thermal up-conversion scheme can reach 73% for
the ideal selective emittance characteristics (perfect so-
lar absorption and perfect thermal emission blocking) of
the up-converter surfaces under illumination by the non-
concentrated sunlight (Figure 8d) [208]. Reaching high
up-conversion efficiency requires raising the up-converter
temperature, which for the commonly used PV materials—
for example, Si, GaAs, CdTe, and GaAsP-nevertheless was
predicted to lie within practically achievable 900-1600 K
range. Non-ideal up-converter surfaces that allow for rea-
sonable absorption and emission losses still yield limiting
efficiency values exceeding 45% for moderate optical con-
centration of 300 suns (Figure 8d). The observed increase
in the predicted conversion efficiency is a result of better
matching of the PV cell bandgap energy to the energy of in-
coming photons, which reduces irreversible entropy gen-
eration in the PV cell. For the ideal angular and spectral
characteristics of the up-converter surfaces, the entropy
creation rate in the up-converter is much lower than that in
the PV cell, which explains high maximum efficiency lev-
els shown in Figure 8d. However, the increase in the radi-
ation losses from the up-converter with non-ideal charac-
teristics results in the increase in the entropy creation rate
in the up-converter (see section 1.2), which is reflected in
the drop in the hybrid device efficiency. Successful realiza-
tion of such hybrid platform could offer new opportunities
for reaching higher levels of solar energy conversion effi-
ciency under low levels of optical concentration [15, 208].

3.2 Laser cooling and heat-assisted
luminescence

Anti-Stokes luminescence is another example of a process
based on thermally induced up-conversion of the pho-
ton energy. The thermal up-conversion process discussed
in the previous section relies on the energy storage as
the phonon or free electron energy, accompanied by con-
trolled photon re-emission in thermal equilibrium with the
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material. The photon up-conversion via anti-Stokes lumi-
nescence instead makes use of a non-equilibrium pho-
ton emission as a result of radiative recombination of
electron-hole pairs assisted by electron—phonon scatter-
ing, as schematically shown in Figure 9a. This process re-
sults in the emission of photons carrying chemical poten-
tial (see section 1.1) and with energies that are higher than
the energy of photons in the optical pump, which forms
a basis for optical refrigeration (also called laser refriger-
ation or anti-Stokes fluorescent cooling) [50—52]. Optical
refrigeration can be achieved by irradiating a luminescent
material at a frequency on the low energy tail of its absorp-
tion band, which is followed by spontaneous emission of
more energetic photons in the process of the anti-Stokes lu-
minescence (Figure 9b). The extra energy of emitted pho-
tons is extracted from the lattice phonons, which results in
the cooling of the material. The anti-Stokes luminescence
can also be observed under material pumping via electron
injection [209-212].

Although optical refrigeration was originally pro-
posed by Pringsheim almost a century ago [50], the
progress in this field was stymied for decades, first, by the
concerns for possible violation of the thermodynamics sec-
ond law [213] and later, by the lack of high-purity materi-
als. Landau helped to resolve the controversy with the sec-
ond law violation by proper accounting for the entropy of
light emitted in the process of spontaneous isotropic anti-
Stokes fluorescence [6] (see section 1.2). In turn, progress
in materials engineering yielded materials with high inter-
nal quantum efficiency, which enabled successful experi-
mental demonstrations of the optical refrigeration, mostly
of rare-Earth-doped grasses [42, 51, 52], starting with the
experiments of Epstein and co-authors [42]. The efficiency
of the laser cooling process scales with the material ab-
sorption efficiency n,ps; and the external quantum effi-
ciency Next as e = Maps * Next * (Ap/Af) — 1, where Ap
is the wavelength of the optical pump, and is the wave-
length of the spontaneous anti-Stokes fluorescent emis-
sion. Accordingly, a lot of effort in increasing this efficiency
has been directed to material engineering in order to in-
crease the pump photon absorption rate and to suppress
non-radiative decay due to multi-phonon emission pro-
cesses. In particular, electron DOS engineering with quan-
tum wells, dots, and impurity bands has been explored to
increase the cooling efficiency [64, 210, 214-217]. However,
the external quantum efficiency can be strongly affected
by the photon DOS in the emitter and its near-field neigh-
borhood, which paves the way to the potential efficiency
increase via photonic engineering [51, 64, 218].

The role that the photon DOS engineering can play in
boosting the efficiency of the optical refrigeration is two-

Brought to you by | MIT Libraries
Authenticated
Download Date | 10/6/16 7:57 PM



148 —— S.V.Boriskina et al., Heat meets light on the nanoscale

DE GRUYTER OPEN

v

luminescent emitter

Solid-state

(a) heat (b)
excited state o’
) RTINS E, 7
AAVAVA™ B [V 4VAVAVAVS emitted
absorbed| y [ | DHgton
photon E
ground state
heat

& TR
Heat sink or PV cell

Fig. 9. Heat-assisted luminescence as a basis for optical refrigeration and photon up-conversion. (a) Energy diagram illustrating the pro-
cess of the anti-Stokes luminescence under optical pumping. (b) Schematic of the energy exchange between an optical pump, a lumines-
cent material exhibiting anti-Stokes luminescence, and a heat sink, which absorbs up-converted photons. (c, d) Demonstrated photonic so-
lutions for enhancing the efficiency of laser cooling, including a high-index absorber optically coupled to the luminescent emitter through
(c) a nanogap (reproduced with permission from [221], ©SPIE) (c), and (d) a nanobelt cryocooler (reproduced with permission from [222],

©ACS).

fold. First, a fluorescence peak can be blue-shifted by sup-
pressing the photon DOS in a spectral range above the
pump wavelength A, thus decreasing A;. Additionally,
an increase of the radiative rate at the blue-shifted emis-
sion wavelength could increase the external quantum ef-
ficiency 7ex:. Photonic crystals [219] and planar surfaces
supporting surface-plasmon polariton modes [64, 220]
have been theoretically proposed by Khurgin as promis-
ing means to improve the cooling efficiency, however,
they have not been experimentally demonstrated to date.
Two successful examples of the nanophotonic structures
that improve the efficiency of the optical refrigeration are
shown in Figure 9c, 9d. The structure in Figure 9c makes
use of the n? emission rate enhancement (see section 1.3)
in a high-index absorber. The absorber is coupled to a lu-
minescent emitter across a nanoscale gap, which provides
thermal insulation and enhances photon extraction via
frustrated total internal reflection process, that is, pho-
ton tunneling across the gap [51, 221]. High-index pho-
ton extractors shaped as domes, which are directly at-
tached to the luminescent emitter have also been exper-
imentally demonstrated [51]. In turn, the use of optically
thin nanobelt cryocoolers (Figure 9d) [218, 222] enables
suppression of the photon DOS inside the luminescent ma-
terial and thus increases the external quantum efficiency.
Instead of getting trapped inside the material and optically
recycled until they are re-absorbed, up-converted photons
can escape the nanobelt structure, resulting in its tempera-
ture reduction. Likewise, photon DOS engineering has po-
tential to improve cooling of solids via the process of spon-
taneous anti-Stokes Raman scattering [223].

Finally, as the heat-enhanced anti-Stokes sponta-
neous emission and scattering processes enable photon
energy up-conversion, they can be used to increase the
efficiency of solar energy conversion processes. One pos-
sible realization of a hybrid solar energy converter using
heat-assisted photoluminescence has recently been pro-
posed [15, 73, 74, 224-226], and is schematically illus-
trated in Figure 9b. In such a converter, solar radiation
is absorbed in a low-bandgap photo-luminescent emitter,
which is kept at high temperature. The heat sink is re-
placed with a PV cell with the bandgap energy higher than
the bandgap of the emitter. The up-converted photons
emitted in the process of the anti-Stokes luminescence
gain enough energy to be harvested by the high-bandgap
PV cell. This enables converting thermal energy into elec-
trical work at high voltage, which yields enhanced device
efficiency. Such a hybrid conversion platform has been the-
oretically predicted to reach maximum efficiency of 70% at
operating temperatures below 1000°C. Operation at even
lower temperatures (< 500 K) can be achieved if the ther-
mal gradient is maintained by a hot electron-hole gas
rather than by a hot lattice, such as, for example, in a
hot-carrier solar cell operated at open circuit [34]. Recent
experiments demonstrated 30% up-conversion efficiency
by using a InGaAs/GaAsP quantum well up-converter,
where the thermal gradient was maintained by steady-
state Auger heating of charge carriers [35].
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4 Bridging heat conduction and
radiation on the nanoscale

As discussed above, tremendous progress has been made
in understanding and controlling thermal emission, which
resulted in successful demonstrations of coherent ther-
mal sources. However, unless thermal emitters are oper-
ated at high temperatures, they are only suitable for low
power applications, especially when compared to con-
ventional coherent emission sources, such as lasers and
light emitting diodes as well as alternative heat transfer
mechanisms, such as heat conduction and convection. At
realistic emitter temperatures, the power output of ther-
mal sources and optical energy converters is low, even
if they can theoretically operate at very high efficiencies.
One approach to boost the power output relies on stor-
ing energy in the form of non-equilibrium excitations,
with subsequent emission of photons that carry chemi-
cal potential. This enables generation of a higher energy
flux than equilibrium blackbody radiation at the same
temperature of the emitter (see Figure 1a). This approach
forms the basis for the operation of the hybrid energy con-
verter based on the heat-enhanced anti-Stokes lumines-
cence (Figure 9b) [15, 73, 74, 224]. Another approach makes
use of the dramatic enhancement of the local photon DOS
in the near-field of a thermal emitter to increase the ra-
diative power of a thermal source [61]. Past studies have
successfully demonstrated both theoretically and exper-
imentally that by separating an emitter and an absorber
by distances comparable to the wavelength of radiation, it
is possible to enhance radiative transfer by several orders
of magnitude beyond the blackbody limit [12, 90, 91, 93—
96, 99, 227-232].

4.1 Near-field DOS enhancement & resonant
energy transfer

The latter approach is demonstrated in Figure 10a, which
compares the photon energy flux spectrum of a black-
body emitter with the corresponding spectra for a thin-film
“thermal well” emitter [62, 105], collected in the far- and
the near-field, respectively. It can be seen in Figure 10a
that the photon DOS modification in thin-film emitters can
be used to efficiently suppress long-wavelength far-field
thermal radiation (blue solid line). The photon DOS sup-
pression below cut-off frequencies of the guided modes
trapped in the thin film by the total internal reflection is
analogous to the case of the nanobelt cryocooler [218, 222]
discussed in section 3.2. This spectral selectivity translates
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into high theoretically predicted efficiency of TPV plat-
forms using thin film emitters and thin film PV cells [105].
However, the total energy flux delivered by photons from
the emitter to the PV cell drops dramatically below the
blackbody emitter level, which would reduce the power
output of a TPV platform. The observed drop in the power
flux is due to an inability of the high-momentum guided
modes in the thin film to couple to the free-space propagat-
ing modes that carry energy away from the emitter into the
far field (top inset in Figure 10a). In contrast, if the same
emitter and the PV cell are coupled through the near field,
the radiative energy flux is significantly enhanced and can
exceed the blackbody level by orders of magnitude while
retaining spectral selectivity (red solid line). The basis for
the observed enhancement is the efficient coupling of the
high-k trapped waveguide modes across the vacuum gap,
which results in the enhanced tunneling of emitted pho-
tons into the absorber (middle inset in Figure 10a).

Even more dramatic enhancement of the near-field ra-
diative heat transfer rate can be achieved by using near-
field emitters and absorbers supporting surface polariton
modes, which exhibit significant photon DOS enhance-
ment at resonance, as explained in section 1.3. Figure 10b
presents calculated near-field heat flux spectra between
planar emitters and absorbers made of either aluminum
zinc oxide (AZO, blue solid line) or SiC (teal solid line)
and coupled across a 20-nm wide vacuum gap [72]. Both
spectra exhibit resonant peaks due to the electromagnetic
coupling of surface plasmon—polariton modes in AZO and
phonon-polariton modes in SiC across the vacuum gap
(bottom inset in Figure 10a). These peaks exceed the black-
body limit by orders of magnitude. Figure 10b also illus-
trates that further radiative heat flux enhancement can
be achieved if the emitter and the absorber are shaped as
ultra-thin films (compare the red solid line with the blue
one). The additional enhancement has been attributed to
the significant spectral broadening of the emission spec-
tra due to coupling between SPP modes on both sides of
each thin film [72, 233]. Similarly, mode-coupling-induced
spectrum broadening and enhancement of the radiative
heat flux has been predicted and demonstrated for thin-
film SPhP emitters [92, 93, 234-237] as well as for metama-
terial [98, 103, 104, 147, 186, 192, 238, 239] emitters com-
posed of multiple thin films (or nanowires) supporting po-
lariton modes.

4.2 Bridging conduction and radiation

To date, most of the calculations of both the far-field ther-
mal emission and the near-field radiative energy transfer
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Fig. 10. Near-field effects in the enhancement of the radiative heat transfer. (a) Spectral radiative heat flux between a thin-film “thermal
well” emitter and a thin-film absorber [105] in both near-field (10 nm vacuum gap, solid red line) and far-field (100 micron vacuum gap,
solid blue line) regimes with respect to a blackbody heat flux at the same temperature (gray dotted line). The emitter is a Ge thin-film of
860 nm thickness and an absorber is a GaSb film of 136-nm thickness, both of which are supported by perfect back reflectors [105]. The
hot and cold side temperatures are 1000 K and 300 K, respectively. The insets schematically illustrates the three channels used for the
radiative heat transfer, from top to bottom: via propagating waves, via photon tunneling due to frustrated total internal reflection, and via
near-field coupling of high-LDOS surface polariton modes. (b) The heat flux spectra as a function of wavelength between various emitters
and absorbers supporting surface polariton modes. The gap is 20 nm wide, and the hot and cold side temperatures are 1000 K and 360 K,
respectively. The blackbody heat flux is shown as the dotted line. (c) Thermal conductance as a function of gap width calculated by using
the classical (Rytov) theory [7, 8] and a recently developed atomic approach [242].

have relied upon macroscopic Maxwell equations—either
exact or under various approximations. Although the con-
tinuum electromagnetic models smear out the atomic de-
tails, they are applicable in most practical cases. However,
these details cannot be ignored when the separation be-
tween thermal emitters and absorbers approaches atomic
length scales. As a result, the electrodynamic theory devel-
oped by Rytov [7, 8] to model the near-field radiative heat
transfer, which is based on the fluctuation—-dissipation
theorem [240], diverges as the gap between an emitter and
absorber approaches zero (see Figure 10c), which is un-
physical. Accordingly, a mechanistic atomic-scale descrip-
tion of the transfer mechanisms is required for more accu-
rate prediction of energy transfer at very small separations
between two bodies.

To develop such an approach, we utilized the Green’s
function formalism using lattice dynamics with the mi-
croscopic Maxwell equations [241]. By using the new ap-
proach, we investigated the mechanisms underlying en-
ergy transport between two ionic slabs in the near-field
radiation regime down to contact within a single unified
formalism [242]. Figure 10c shows the calculated values of
conductance plotted as a function of slab separation for
small gaps to show the discrepancy between our approach
(dots) and Rytov theory (solid line) near contact. The Ry-
tov theory demonstrates the unphysical divergence near
contact whereas our theory is able to yield a finite contact
conductance. The new model resolves the zero-gap diver-

gence issue and provides a computational tool to probe the
conductance from the near-field radiation regime down to
contact in a unified manner. Interestingly, the new results
show that near-field radiative heat flux at very small gaps
can be enhanced even stronger than previously predicted
via continuous electromagnetic models.

5 Discussion: remaining
challenges and outlook

Despite the tremendous progress in understanding vari-
ous mechanisms of thermal emission manipulation and
applying this knowledge to develop new device designs,
many challenges still remain, both fundamental and tech-
nological.

5.1 Progress and challenges in materials
engineering and fabrication

For example, fabrication of nanoscale gaps between an
emitter and absorber remains a significant technologi-
cal challenge. As a result, experimental demonstration of
high-efficiency near-field TPV platforms is lacking despite
many promising conceptual proposals. However, radiative
heat transfer between a nanoscale tip and a planar surface
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Fig. 11. Dynamic tunability of thermal emission. (a, b) Absorp-
tance/emittance spectra of a metamaterial structure composed of
VO,, MgF,, and an Al back reflector. At low temperatures, the struc-
ture acts as a mirror (a), while at high temperatures, it becomes an
efficient broadband emitter (b). (c) The near-field heat flux spectra
as a function of wavelength between 2 nm-thin VO, films on SiO,
substrates at an emitter temperature of 1000 K and an absorber
temperature either at 360 K (red line) or 341 K (blue line) [72]. The
emitter and absorber are separated by a 20 nm gap. (d) Simulated
radiative heat flux between ferroelectric materials for a 100 nm gap
between hot and cold surfaces [260]. Magnitude of spectral heat
flux is modulated via external electric field.

can be achieved at very narrow separations. This offers
many interesting technological applications, including
thermal radiation scanning tunneling microscopy [243—
246), high-resolution thermal lithography [89], and heat-
assisted magnetic recording [247-249], where nanoscale
thermal emitters are used to heat a magnetic recording
medium. The progress in this field will also benefit opti-
cal refrigeration and photon up-conversion applications,
where the figure of merit can be improved by using the
near-field fluorescence extraction mechanism [220, 250].
Continued progress in materials engineering is also
essential for the development of new material platforms
with optical properties tuned to yield high photon DOS at
various frequencies from the visible to the far-IR [171, 251
253]. In particular, dynamically tunable thermal emitters
are of high interest with applications to sensing, space-
craft thermal management, and thermal camouflage. Ma-
terials that actively alter their thermal emittance through
phase change have been investigated for this purpose,
most notably, vanadium dioxide (VO,), which undergoes
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an insulator-to-metal transition at 68°C [254, 255]. This
leads to the thermal emission reduction if the temperature
is increased above the transition temperature, contrary to
the blackbody emission trend, and offers applications in
IR camouflage [256]. However, unique properties of VO,
can also be used to design metamaterial emitters that emit
strongly at temperatures above the phase transition as il-
lustrated in Figure 11a, 11b. The emitter shown in Figure 11a
has a periodic structure composed of thin layers of VO,
and magnesium fluoride (MgF,), which is a transparent di-
electric in mid-IR, and is supported by an aluminum (Al)
back reflector. At low temperatures, the multi-layer struc-
ture is largely transparent in the IR, and thus the over-
all emittance is governed by the Al mirror, resulting in a
low emittance (Figure 11a). In contrast, at high tempera-
tures, VO, becomes metallic and the multi-layer structure
undergoes a transition to become a hyperbolic metamate-
rial, which exhibits enhanced emission across the entire
IR wavelength range due to its hyperbolic photon disper-
sion [63, 65, 97-100] (Figure 11b). Such metamaterial emit-
ters with variable heat rejection can be useful for terrestrial
and spacecraft thermal management applications [257].

VO, emitters can also be used to achieve strong dy-
namic modification of the near-field heat transfer, espe-
cially in combination with polar materials, such as SiO,
or SiC (Figure 11c). A thin film of VO, in its metallic phase
supports SPP modes, which enhance the near-field radia-
tive heat flux at high temperatures and screen the SPhP
mode of the silica substrate (red solid line). When the VO,
film becomes transparent in its insulator phase, it enables
the SPhP mode to transfer energy across the nanoscale gap
between the emitter and the absorber, resulting in a dra-
matic spectral transformation of the near-field heat flux
(blue solid line). It should be noted that in the case of low-
temperature operation, the radiative near-field heat flux
from a VO, surface is dominated by the strong contribu-
tion from the SPhP polariton modes supported by the in-
sulator phase of VO, at low frequencies (above 20 pm in
wavelength) [96].

Active tuning of thermal emission via external electric
or magnetic fields could enable higher switching rates, but
to date, has only been demonstrated in a handful of mate-
rials. These include fast modulation of the intersubband
emission of the quantum well p—i—n diodes [258] and tun-
ing of the graphene thermal emission [259] via application
of gate bias, which varies the carrier density in the emitter
material. Emission properties of perovskite-structure fer-
roelectric materials can also be modulated by application
of an external DC electric field, as illustrated in Figure 11d,
and temperature [260]. However, as this process is most
effective near the Curie temperature—that is, phase tran-
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sition temperature between ferroelectric and paraelectric
phases—development of ferroelectric materials with high
Curie temperatures is necessary for practical applications.
Other types of phase-change or voltage-tunable materials
that can be explored for developing tunable thermal emit-
ters include W-VO, alloys [261], ITO [262], and Ge,Sb,Tes
(GST) [263] just to name a few. Achieving material sta-
bility at high temperatures and outside of vacuum envi-
ronment is also a big challenge that needs to be over-
come [15, 154, 264].

5.2 Advances and challenges in
fundamental understanding and
nanophotonic design

Some fundamental aspects of the light absorption, emis-
sion, as well as light-to-work energy conversion are still
under investigation. In particular, the search is still on-
going for the optimum conditions to achieve higher-than-
blackbody emittance of coherent nanoscale sources or
by reciprocity, enhanced resonant absorption at select
frequencies. Some success in increasing the absorption
cross-sections has been achieved by tuning the geom-
etry and material composition of nanoscale emitters to
achieve near-degeneracy of several trapped photon modes
of different polarization and angular momentum in a nar-
row spectral range [265, 266]. Metamaterial hyperlenses
have been theoretically predicted to yield selective ab-
sorber heating and, by reciprocity, enhanced light extrac-
tion from nanoscale thermal sources into the far field [78,
267, 268]. It has also been proposed that extraordinarily
large absorption cross-sections of nanoscale resonators
can be achieved by embedding them into a material with
near-zero refractive index [269]. Recent progress in design-
ing and fabricating low-loss zero-index metamaterials op-
erating at various frequency ranges [270-273] makes feasi-
ble practical realization of this approach. The role of col-
lective effects [274] caused by the interference between
multiple coherent thermal sources in thermal emission en-
hancement, radiation wave front shaping, and focusing
still needs to be revealed [275, 276]. In particular, funda-
mental and technological solutions for thermal emission
focusing can help to overcome challenges in realizing the
near-field coupling schemes.

Fundamental studies on the entropy and informa-
tion content of correlated light fields generated by coher-
ent thermal sources are also important [277-279], espe-
cially in the processes of light absorption and emission
away from thermal equilibrium, when light-matter inter-
actions occur over time scales too short for the thermal-
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ization process to take place. This is illustrated by a re-
cent striking demonstration of efficient optical refrigera-
tion via the heat transport between a thermal bath and a
non-equilibrium exciton—polariton fluid [280]. Other the-
oretical studies predict that a modification of a photonic
system coupling to the thermal bath via parametric oscil-
lations may create an effective chemical potential for pho-
tons even in thermodynamic equilibrium [31]. This offers
potential applications in quantum electrodynamics and
optomechanics.

Finally, addressing the issues associated with heat re-
moval from the laser gain media require detailed under-
standing of the energy and entropy of the photons, elec-
trons, and phonons in laser systems [41, 281-284]. Devel-
opment of a complete theoretical framework connecting
the fundamental atomic physics, thermodynamics, and
material science associated with photon absorption, emis-
sion, and non-radiative thermal transport phenomena at
nano/micro and macro scales is necessary to address these
issues.
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