291 research outputs found

    Identities for hyperelliptic P-functions of genus one, two and three in covariant form

    Full text link
    We give a covariant treatment of the quadratic differential identities satisfied by the P-functions on the Jacobian of smooth hyperelliptic curves of genera 1, 2 and 3

    Selmer Groups in Twist Families of Elliptic Curves

    Full text link
    The aim of this article is to give some numerical data related to the order of the Selmer groups in twist families of elliptic curves. To do this we assume the Birch and Swinnerton-Dyer conjecture is true and we use a celebrated theorem of Waldspurger to get a fast algorithm to compute % L_{E}(1). Having an extensive amount of data we compare the distribution of the order of the Selmer groups by functions of type α(loglog(X))1+εlog(X)\alpha \frac{(\log \log (X))^{1+\varepsilon}}{\log (X)} with ε\varepsilon small. We discuss how the "best choice" of α\alpha is depending on the conductor of the chosen elliptic curves and the congruence classes of twist factors.Comment: to appear in Quaestiones Mathematicae. 16 page

    K-Rational D-Brane Crystals

    Full text link
    In this paper the problem of constructing spacetime from string theory is addressed in the context of D-brane physics. It is suggested that the knowledge of discrete configurations of D-branes is sufficient to reconstruct the motivic building blocks of certain Calabi-Yau varieties. The collections of D-branes involved have algebraic base points, leading to the notion of K-arithmetic D-crystals for algebraic number fields K. This idea can be tested for D0-branes in the framework of toroidal compactifications via the conjectures of Birch and Swinnerton-Dyer. For the special class of D0-crystals of Heegner type these conjectures can be interpreted as formulae that relate the canonical Neron-Tate height of the base points of the D-crystals to special values of the motivic L-function at the central point. In simple cases the knowledge of the D-crystals of Heegner type suffices to uniquely determine the geometry.Comment: 36 page

    Maslov Indices and Monodromy

    Get PDF
    We prove that for a Hamiltonian system on a cotangent bundle that is Liouville-integrable and has monodromy the vector of Maslov indices is an eigenvector of the monodromy matrix with eigenvalue 1. As a corollary the resulting restrictions on the monodromy matrix are derived.Comment: 6 page

    Borel-Cantelli sequences

    Get PDF
    A sequence {xn}1\{x_{n}\}_1^\infty in [0,1)[0,1) is called Borel-Cantelli (BC) if for all non-increasing sequences of positive real numbers {an}\{a_n\} with i=1ai=\underset{i=1}{\overset{\infty}{\sum}}a_i=\infty the set k=1n=kB(xn,an))={x[0,1)xnx<anformanyn1}\underset{k=1}{\overset{\infty}{\cap}} \underset{n=k}{\overset{\infty}{\cup}} B(x_n, a_n))=\{x\in[0,1)\mid |x_n-x|<a_n \text{for} \infty \text{many}n\geq1\} has full Lebesgue measure. (To put it informally, BC sequences are sequences for which a natural converse to the Borel-Cantelli Theorem holds). The notion of BC sequences is motivated by the Monotone Shrinking Target Property for dynamical systems, but our approach is from a geometric rather than dynamical perspective. A sufficient condition, a necessary condition and a necessary and sufficient condition for a sequence to be BC are established. A number of examples of BC and not BC sequences are presented. The property of a sequence to be BC is a delicate diophantine property. For example, the orbits of a pseudo-Anosoff IET (interval exchange transformation) are BC while the orbits of a "generic" IET are not. The notion of BC sequences is extended to more general spaces.Comment: 20 pages. Some proofs clarifie

    Rational approximation and arithmetic progressions

    Full text link
    A reasonably complete theory of the approximation of an irrational by rational fractions whose numerators and denominators lie in prescribed arithmetic progressions is developed in this paper. Results are both, on the one hand, from a metrical and a non-metrical point of view and, on the other hand, from an asymptotic and also a uniform point of view. The principal novelty is a Khintchine type theorem for uniform approximation in this context. Some applications of this theory are also discussed

    Renormalisation scheme for vector fields on T2 with a diophantine frequency

    Full text link
    We construct a rigorous renormalisation scheme for analytic vector fields on the 2-torus of Poincare type. We show that iterating this procedure there is convergence to a limit set with a ``Gauss map'' dynamics on it, related to the continued fraction expansion of the slope of the frequencies. This is valid for diophantine frequency vectors.Comment: final versio

    Cyclotomic integers, fusion categories, and subfactors

    Get PDF
    Dimensions of objects in fusion categories are cyclotomic integers, hence number theoretic results have implications in the study of fusion categories and finite depth subfactors. We give two such applications. The first application is determining a complete list of numbers in the interval (2, 76/33) which can occur as the Frobenius-Perron dimension of an object in a fusion category. The smallest number on this list is realized in a new fusion category which is constructed in the appendix written by V. Ostrik, while the others are all realized by known examples. The second application proves that in any family of graphs obtained by adding a 2-valent tree to a fixed graph, either only finitely many graphs are principal graphs of subfactors or the family consists of the A_n or D_n Dynkin diagrams. This result is effective, and we apply it to several families arising in the classification of subfactors of index less then 5.Comment: 47 pages, with an appendix by Victor Ostri

    Patterns in rational base number systems

    Full text link
    Number systems with a rational number a/b>1a/b > 1 as base have gained interest in recent years. In particular, relations to Mahler's 3/2-problem as well as the Josephus problem have been established. In the present paper we show that the patterns of digits in the representations of positive integers in such a number system are uniformly distributed. We study the sum-of-digits function of number systems with rational base a/ba/b and use representations w.r.t. this base to construct normal numbers in base aa in the spirit of Champernowne. The main challenge in our proofs comes from the fact that the language of the representations of integers in these number systems is not context-free. The intricacy of this language makes it impossible to prove our results along classical lines. In particular, we use self-affine tiles that are defined in certain subrings of the ad\'ele ring AQ\mathbb{A}_\mathbb{Q} and Fourier analysis in AQ\mathbb{A}_\mathbb{Q}. With help of these tools we are able to reformulate our results as estimation problems for character sums

    Bethe-Sommerfeld conjecture for periodic operators with strong perturbations

    Full text link
    We consider a periodic self-adjoint pseudo-differential operator H=(Δ)m+BH=(-\Delta)^m+B, m>0m>0, in Rd\R^d which satisfies the following conditions: (i) the symbol of BB is smooth in \bx, and (ii) the perturbation BB has order less than 2m2m. Under these assumptions, we prove that the spectrum of HH contains a half-line. This, in particular implies the Bethe-Sommerfeld Conjecture for the Schr\"odinger operator with a periodic magnetic potential in all dimensions.Comment: 61 page
    corecore