132 research outputs found

    Une hypoplasie ponto-cérébelleuse causée par l’accumulation d’un inositol phosphate = A disruption of inositol phosphates metabolism causes pontocerebellar hypoplasia

    Get PDF
    Les hypoplasies ponto-cérébelleuses forment un groupe de maladies neurodégénératives périnatales très rares, caractérisées par une hypoplasie ou une atrophie précoce du cervelet et du tronc cérébral, une structure cérébrale impliquée dans des fonctions vitales, notamment la respiration. La dégénérescence débute au cours du développement cérébral, souvent avant la naissance. Elle est responsable d’une microcéphalie, parfois congénitale, mais plus souvent d’apparition progressive. Les développements moteur et cognitif sont altérés dès les premiers mois de vie, et la maladie est le plus souvent mortelle dans l’enfance. Ces maladies sont principalement génétiques et transmises selon un mode autosomique récessif. Près de 20 gènes responsables ont été identifiés à ce jour [1, 2]. La plupart sont impliqués dans l’épissage et la maturation d’ARN codants ou non codants, alors que les autres gènes jouent des rôles différents. Les mécanismes cellulaires et moléculaires responsables de la dégénérescence sont mal compris

    From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases

    Get PDF
    Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human

    Biallelic loss of EMC10 leads to mild to severe intellectual disability

    Get PDF
    The endoplasmic reticulum membrane protein complex subunit 10 (EMC10) is a highly conserved protein responsible for the post-translational insertion of tail-anchored membrane proteins into the endoplasmic reticulum in a defined topology. Two biallelic variants in EMC10 have previously been associated with a neurodevelopmental disorder. Utilizing exome sequencing and international data sharing we have identified 10 affected individuals from six independent families with five new biallelic loss-of-function and one previously reported recurrent EMC10 variants. This report expands the molecular and clinical spectrum of EMC10 deficiency, provides a comprehensive dysmorphological assessment and highlights an overlap between the clinical features of EMC10-and EMC1-related disease

    MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia

    Get PDF
    Inositol polyphosphates are vital metabolic and secondary messengers, involved in diverse cellular functions. Therefore, tight regulation of inositol polyphosphate metabolism is essential for proper cell physiology. Here, we describe an early-onset neurodegenerative syndrome caused by loss-of-function mutations in the multiple inositol-polyphosphate phosphatase 1 gene (MINPP1). Patients are found to have a distinct type of Pontocerebellar Hypoplasia with typical basal ganglia involvement on neuroimaging. We find that patient-derived and genome edited MINPP1−/− induced stem cells exhibit an inefficient neuronal differentiation combined with an increased cell death. MINPP1 deficiency results in an intracellular imbalance of the inositol polyphosphate metabolism. This metabolic defect is characterized by an accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. These data suggest the involvement of IP6-mediated chelation on Pontocerebellar Hypoplasia disease pathology and thereby highlight the critical role of MINPP1 in the regulation of human brain development and homeostasis

    Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression

    Get PDF
    Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous inborn errors of metabolism. At present, treatment is available for only one CDG, but potential treatments for the other CDG are on the horizon. It will be vitally important in clinical trials of such agents to have a clear understanding of both the natural history of CDG and the corresponding burden of disability suffered by patients. To date, no multicentre studies have attempted to document the natural history of CDG. This is in part due to the lack of a reliable assessment tool to score CDG’s diverse clinical spectrum. Based on our earlier experience evaluating disease progression in disorders of oxidative phosphorylation, we developed a practical and semi-quantitative rating scale for children with CDG. The Nijmegen Paediatric CDG Rating Scale (NPCRS) has been validated in 12 children, offering a tool to objectively monitor disease progression. We undertook a successful trial of the NPCRS with a collaboration of nine experienced physicians, using video records of physical and neurological examination of patients. The use of NPCRS can facilitate both longitudinal and natural history studies that will be essential for future interventions

    Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders

    Get PDF
    The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.<br/

    Reduced Bone Mass and Muscle Strength in Male 5α-Reductase Type 1 Inactivated Mice

    Get PDF
    Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1−/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1−/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1−/− mice. Male Srd5a1−/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1−/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1−/− mice, is an indirect effect mediated by elevated circulating androgen levels

    Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    Get PDF
    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention
    corecore