2,340 research outputs found

    Giant Magnetoresistance Oscillations Induced by Microwave Radiation and a Zero-Resistance State in a 2D Electron System with a Moderate Mobility

    Full text link
    The effect of a microwave field in the frequency range from 54 to 140 GHz\mathrm{GHz} on the magnetotransport in a GaAs quantum well with AlAs/GaAs superlattice barriers and with an electron mobility no higher than 10610^6 cm2/Vs\mathrm{cm^2/Vs} is investigated. In the given two-dimensional system under the effect of microwave radiation, giant resistance oscillations are observed with their positions in magnetic field being determined by the ratio of the radiation frequency to the cyclotron frequency. Earlier, such oscillations had only been observed in GaAs/AlGaAs heterostructures with much higher mobilities. When the samples under study are irradiated with a 140-GHz\mathrm{GHz} microwave field, the resistance corresponding to the main oscillation minimum, which occurs near the cyclotron resonance, appears to be close to zero. The results of the study suggest that a mobility value lower than 10610^6 cm2/Vs\mathrm{cm^2/Vs} does not prevent the formation of zero-resistance states in magnetic field in a two-dimensional system under the effect of microwave radiation.Comment: 4 pages, 2 figur

    CRIMINAL LAW—GIVE ME FREEDOM!: HOW AMBIGUOUS FEDERAL SUPERVISED RELEASE CONDITIONS UNDERMINE THE PURPOSE OF THE SENTENCING REFORM ACT

    Get PDF
    Vagueness, as the word suggests, is inherently uncertain. This Note addresses the issues of vagueness presented by unclear supervised release conditions, as well as discusses the split of authority pertaining thereto. Specifically, the condition discussed throughout the Note prohibits defendants from frequenting places where controlled substances are illegally present. Because federal appellate courts differ as to the condition’s meaning and its application, the existing circuit split will be thoroughly discussed. The main issues with the condition demonstrate a lack of attentiveness and forethought of the sentencing judges that ultimately impose undue hardships onto the defendants wishing to enter back into society. Furthermore, due to the lack of clarity of the proscribed terms, defendants may be uncertain as to what behavior is permitted and what act may result in re-incarceration. Since the proscribed terms are subject to varying interpretations, the defendants subject to this condition may find it difficult to obey. This Note will argue that the imposition of vague supervised release conditions is contradictory to the rehabilitative purpose of supervised release, and will urge the sentencing courts to exercise greater caution when imposing terms of federal supervision. This will ensure that defendants are not subject to unclear terms that may be unintentionally violated

    Nonequilibrium stationary states with ratchet effect

    Full text link
    An ensemble of particles in thermal equilibrium at temperature TT, modeled by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk elastic scatterers. Despite the scatterer asymmetry a directed transport is clearly ruled out by the second law of thermodynamics. Introduction of a polarized zero mean monochromatic field creates a directed stationary flow with nontrivial dependence on temperature and field parameters. We give a theoretical estimate of directed current induced by a microwave field in an antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added

    Twinkling pulsar wind nebulae in the synchrotron cut-off regime and the gamma-ray flares in the Crab Nebula

    Full text link
    Synchrotron radiation of ultra-relativistic particles accelerated in a pulsar wind nebula may dominate its spectrum up to gamma-ray energies. Because of the short cooling time of the gamma-ray emitting electrons, the gamma-ray emission zone is in the immediate vicinity of the acceleration site. The particle acceleration likely occurs at the termination shock of the relativistic striped wind, where multiple forced magnetic field reconnections provide strong magnetic fluctuations facilitating Fermi acceleration processes. The acceleration mechanisms imply the presence of stochastic magnetic fields in the particle acceleration region, which cause stochastic variability of the synchrotron emission. This variability is particularly strong in the steep gamma-ray tail of the spectrum, where modest fluctuations of the magnetic field lead to strong flares of spectral flux. In particular, stochastic variations of magnetic field, which may lead to quasi-cyclic gamma-ray flares, can be produced by the relativistic cyclotron ion instability at the termination shock. Our model calculations of the spectral and temporal evolution of synchrotron emission in the spectral cut-off regime demonstrate that the intermittent magnetic field concentrations dominate the gamma-ray emission from highest energy electrons and provide fast, strong variability even for a quasi-steady distribution of radiating particles. The simulated light curves and spectra can explain the very strong gamma-ray flares observed in the Crab nebula and the lack of strong variations at other wavelengths. The model predicts high polarization in the flare phase, which can be tested with future polarimetry observations.Comment: 5 pages, 3 figures, MNRAS in pres
    corecore