503 research outputs found

    Preliminary Results on gamma gamma -> Ks K pi from CLEO

    Full text link
    We analyzed 13.8 fb^{-1} of the integrated e+e- luminosity collected at 10.6 GeV center-of-mass energy with the CLEO II and II.V detectors to study exclusive two-photon production of single hadronic resonances. We searched for hadrons decaying into Ks K pi when both leptons remain undetected. In this analysis we studied the detection efficiency and evaluated systematic errors using independent data samples. We estimated 90% CL upper limits on the products of the two-photon partial widths of (pseudo)scalar hadrons with masses below 1.7 GeV/c2 and their branching fractions into Ks K pi. Our preliminary results are marginally consistent with the first observation of eta(1440) in two-photon collisions by the L3 experiment.Comment: 4 pages, 1 figure, proceedings contribution for PANIC'0

    Tagging Two-Photon Production at the LHC

    Get PDF
    Tagging two-photon production offers a significant extension of the LHC physics programme. Effective luminosity of high-energy gamma-gamma collisions reaches 1% of the proton-proton luminosity and the standard detector techniques used for measuring very forward proton scattering should allow for a reliable extraction of interesting two-photon interactions. Particularly exciting is a possibility of detecting two-photon exclusive Higgs boson production at the LHC.Comment: 9 pages and 4 figure

    Towards a Precise Parton Luminosity Determination at the CERN LHC

    Get PDF
    A new approach to determine the LHC luminosity is investigated. Instead of employing the proton-proton luminosity measurement, we suggest to measure directly the parton-parton luminosity. It is shown that the electron and muon pseudorapidity distributions, originating from the decay of W+, W- and Z0 bosons produced at 14 TeV pp collisions (LHC), constrain the x distributions of sea and valence quarks and antiquarks in the range from about 3 x 10**-4 to about 10**-1 at a Q**2 of about 10**4 GeV**2. Furthermore, it is demonstrated that, once the quark and antiquark structure functions are constrained from the W+,W- and Z0 production dynamics, other quark-antiquark related scattering processes at the LHC like q-qbar --> W+W- can be predicted accurately. Thus, the lepton pseudorapidity distributions provide the key to a precise parton luminosity monitor at the LHC, with accuracies of about +-1% compared to the so far considered goal of +-5%.Comment: plain tex, 14 pages, 5 figure

    Results of the Baikal experiment on observations of macroscopic nonlocal correlations in reverse time

    Full text link
    Although the general theory macroscopic quantum entanglement of is still in its infancy, consideration of the matter in the framework of action-at-a distance electrodynamics predicts for the random dissipative processes observability of the advanced nonlocal correlations. These correlations were really revealed in our previous experiments with some large-scale heliogeophysical processes as the source ones and the lab detectors as the probe ones. Recently a new experiment has been performing on the base of Baikal Deep Water Neutrino Observatory. The thick water layer is an excellent shield against any local impacts on the detectors. The first annual series 2012/2013 has demonstrated that detector signals respond to the heliogeophysical processes and causal connection of the signals directed downwards: from the Earth surface to the Baikal floor. But this nonlocal connection proved to be in reverse time. In addition advanced nonlocal correlation of the detector signal with the regional source-process: the random component of hydrological activity in the upper layer was revealed and the possibility of its forecast on nonlocal correlations was demonstrated. But the strongest macroscopic nonlocal correlations are observed at extremely low frequencies, that is at periods of several months. Therefore the above results should be verified in a longer experiment. We verify them by data of the second annual series 2013/2014 of the Baikal experiment. All the results have been confirmed, although some quantitative parameters of correlations and time reversal causal links turned out different due to nonstationarity of the source-processes. A new result is displaying of the advanced response of nonlocal correlation detector to the earthquake. This opens up the prospect of the earthquake forecast on the new physical principle, although further confirmation in the next events is certainly needed.Comment: 9 pages, 9 figure

    Optical polarization observations with the MASTER robotic net

    Full text link
    We present results of optical polarization observations performed with the MASTER robotic net for three types of objects: gamma-ray bursts, supernovae, and blazars. For the Swift gamma-ray bursts GRB100906A, GRB110422A, GRB121011A, polarization observations were obtained during very early stages of optical emission. For GRB100906A it was the first prompt optical polarization observation in the world. Photometry in polarizers is presented for Type Ia Supernova 2012bh during 20 days, starting on March 27, 2012. We find that the linear polarization of SN 2012bh at the early stage of the envelope expansion was less than 3%. Polarization measurements for the blazars OC 457, 3C 454.3, QSO B1215+303, 87GB 165943.2+395846 at single nights are presented. We infer the degree of the linear polarization and polarization angle. The blazars OC 457 and 3C 454.3 were observed during their periods of activity. The results show that MASTER is able to measure substantially polarized light; at the same time it is not suitable for determining weak polarization (less than 5%) of dim objects (fainter than 16m^m). Polarimetric observations of the optical emission from gamma-ray bursts and supernovae are necessary to investigate the nature of these transient objects.Comment: 31 pages, 12 figures, 4 tables; Exposure times in Table 2 have been correcte

    Production of relativistic positronium in collisions of photons and electrons with nuclei and atoms

    Full text link
    We consider the production of ultrarelativistic positronium (Ps) in γAPs+A\gamma A \to Ps + A and eAPs+eAe A \to Ps + e A processes where AA is an atom or a nucleus with charge ZeZe. For the photoproduction of para- and ortho-Ps and the electroproduction of para-Ps we obtain the most complete description compared with previous works. It includes high order ZαZ \alpha corrections and polarization effects. The accuracy of the obtained cross sections is determined by omitted terms of the order of the inverse Ps Lorentz factor squared. The studied high order multi-photon electroproduction of ortho-Ps dominates for the collision of electrons with heavy atoms over the bremsstrahlung production from the electron via a virtual photon proposed by Holvik and Olsen. Our results complete and correct the studies of those authors.Comment: 19 pages, 9 figures, RevTex; v2: minor corrections for the accuracy of the results, a discussion of the literature added in a footnote, one additional reference; v3: diagram of Fig.2 correcte

    Virtual photon structure functions and positivity constraints

    Full text link
    We study the three positivity constraints among the eight virtual photon structure functions, derived from the Cauchy-Schwarz inequality and which are hence model-independent. The photon structure functions obtained from the simple parton model show quite different behaviors in a massive quark or a massless quark case, but they satisfy, in both cases, the three positivity constraints. We then discuss an inequality which holds among the unpolarized and polarized photon structure functions F1γF_1^\gamma, g1γg_1^\gamma and WTTτW_{TT}^\tau, in the kinematic region Λ2P2Q2\Lambda^2\ll P^2 \ll Q^2, where Q2(P2)-Q^2 (-P^2) is the mass squared of the probe (target) photon, and we examine whether this inequality is satisfied by the perturbative QCD results.Comment: 24 pages, 13 eps figure

    Equivalent Photon Approach to Simultaneous Excitation in Heavy Ion Collision

    Get PDF
    We apply the Equivalent Photon Approximation to calculate cross sections for the simultaneous excitation of two heavy ions in relativistic collisions. We study especially the excitation of two nuclei to a 1- - state and show that the equations are symmetric with respect to both ions. We also examine the limit in which the excitation energy of one of the nuclei goes to zero, which gives the elastic case. Finally a few remarks about the limits of this approach are made.Comment: 9 pages REVTex, 4 Figures included, see also http://www.phys.washington.edu/~hencken
    corecore