725 research outputs found
Topological Phases of Sound and Light
Topological states of matter are particularly robust, since they exploit
global features insensitive to local perturbations. In this work, we describe
how to create a Chern insulator of phonons in the solid state. The proposed
implementation is based on a simple setting, a dielectric slab with a suitable
pattern of holes. Its topological properties can be wholly tuned in-situ by
adjusting the amplitude and frequency of a driving laser that controls the
optomechanical interaction between light and sound. The resulting chiral,
topologically protected phonon transport along the edges can be probed
completely optically. Moreover, we identify a regime of strong mixing between
photon and phonon excitations, which gives rise to a large set of different
topological phases. This would be an example of a Chern insulator produced from
the interaction between two physically very different particle species, photons
and phonons
Covariant boost and structure functions of baryons in Gross-Neveu models
Baryons in the large N limit of two-dimensional Gross-Neveu models are
reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a
baryon to any inertial frame and shown to yield the covariant energy-momentum
relation. Momentum distributions are computed exactly in arbitrary frames and
used to interpolate between the rest frame and the infinite momentum frame,
where they are related to structure functions. Effects from the Dirac sea
depend sensitively on the occupation fraction of the valence level and the bare
fermion mass and do not vanish at infinite momentum. In the case of the kink
baryon, they even lead to divergent quark and antiquark structure functions at
x=0.Comment: 13 pages, 12 figures; v2: minor correction
Limit quantum efficiency for violation of Clauser-Horne Inequality for qutrits
In this paper we present the results of numerical calculations about the
minimal value of detection efficiency for violating the Clauser - Horne
inequality for qutrits. Our results show how the use of non-maximally entangled
states largely improves this limit respect to maximally entangled ones. A
stronger resistance to noise is also found.Comment: Phys. Rev. A in pres
Topologically Protected Transport in Engineered Mechanical Systems
Mechanical vibrations are being harnessed for a variety of purposes and at many length scales, from the macroscopic world down to the nanoscale. The considerable design freedom in mechanical structures allows to engineer new functionalities. In recent years, this has been exploited to generate setups that offer topologically protected transport of vibrational waves, both in the solid state and in fluids. Borrowing concepts from electronic physics and being cross-fertilized by concurrent studies for cold atoms and electromagnetic waves, this field of topological transport in engineered mechanical systems offers a rich variety of phenomena and platforms. In this review, we provide a unifying overview of the various ideas employed in this area, summarize the different approaches and experimental implementations, and comment on the challenges as well as the prospects
Snowflake phononic topological insulator at the nanoscale
We show how the snowflake phononic crystal structure, which recently has been realized experimentally, can be turned into a topological insulator for mechanical waves. This idea, based purely on simple geometrical modifications, could be readily implemented on the nanoscale
The GEO 600 laser system
Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAGNd:YVO4 system is scaled to more than 22 W
Cholinergic modulation of UpâDown states in the mouse medial entorhinal cortex in vitro
Cholinergic tone is high during wake and rapid eye movement sleep and lower during slow wave sleep (SWS). Nevertheless, the low tone of acetylcholine during SWS modulates sharp wave ripple incidence in the hippocampus and slow wave activity in the neocortex. Linking the hippocampus and neocortex, the medial entorhinal cortex (mEC) regulates the coupling between these structures during SWS, alternating between silent Down states and active Up states, which outlast neocortical ones. Here, we investigated how low physiological concentrations of acetylcholine (ACh; 100â500 nM) modulate Up and Down states in a mEC slice preparation. We find that ACh has a dual effect on mEC activity: it prolongs apparent Up state duration as recorded in individual cells and decreases the total synaptic charge transfer, without affecting the duration of detectable synaptic activity. The overall outcome of ACh application is excitatory and we show that ACh increases Up state incidence via muscarinic receptor activation. The mean firing rate of principal neurons increased in around half of the cells while the other half showed a decrease in firing rate. Using twoâphoton calcium imaging of population activity, we found that populationâwide network events are more frequent and rhythmic during ACh and confirmed that ACh modulates cell participation in these network events, consistent with a role for cholinergic modulation in regulating information flow between the hippocampus and neocortex during SWS
Optimal Computation of Avoided Words
The deviation of the observed frequency of a word from its expected
frequency in a given sequence is used to determine whether or not the word
is avoided. This concept is particularly useful in DNA linguistic analysis. The
value of the standard deviation of , denoted by , effectively
characterises the extent of a word by its edge contrast in the context in which
it occurs. A word of length is a -avoided word in if
, for a given threshold . Notice that such a word
may be completely absent from . Hence computing all such words na\"{\i}vely
can be a very time-consuming procedure, in particular for large . In this
article, we propose an -time and -space algorithm to compute all
-avoided words of length in a given sequence of length over a
fixed-sized alphabet. We also present a time-optimal -time and
-space algorithm to compute all -avoided words (of any
length) in a sequence of length over an alphabet of size .
Furthermore, we provide a tight asymptotic upper bound for the number of
-avoided words and the expected length of the longest one. We make
available an open-source implementation of our algorithm. Experimental results,
using both real and synthetic data, show the efficiency of our implementation
- âŠ